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Features of Computer-Based
Clinical Decision Support

Robert A. Greenes

The purpose of this chapter is to dig deeper into the nature of computer-based clini-
cal decision support, in terms of the ways in which it is or potentially could be used,
its design, and its interaction with host environments. I believe that understanding
these aspects of CDS is important as a foundation for serious efforts to increase
its dissemination and adoption. As pointed out in previous chapters, and as will be
explored in more detail in Section II, much of the success of CDS has been with
one-off implementations that have been difficult to maintain over time even within
their own institutions, more problematic when extended for use throughout a health
care enterprise, and only rarely replicated elsewhere despite demonstrated effective-
ness. If we are to tackle this issue and break down barriers to dissemination and
adoption, we need to know what we are working with, which aspects are most trou-
blesome and how they can be improved, and which components or interfaces can be
standardized or made easier to deploy. We also need to understand the human fac-
tors and process and workflow implications of CDS use, so that we can determine
optimal approaches to invocation and user interface design.

An underlying thesis is that CDS has a conceptual architecture comprised of a
number of design elements or components. Many kinds of CDS are designed with-
out the architecture being explicit, but I will try to demonstrate that all the design
elements nonetheless are present, even if implicit. A second thesis is that CDS does
not function in isolation, but rather that it operates in the context of some sort of
application environment. Nonetheless, in the discussion to follow, I will consider
the chunk of software that provides CDS as a “module” of software that interacts
with the application environment, recognizing full well that often CDS implemen-
tations are not modular at all, and that the dividing line between what constitutes
CDS and what constitutes the application that invokes it is frequently not clearly
defined, so that the two cannot be cleanly separated. In any case, we can think of
the functions that are performed as being done by either the application environ-
ment or by the CDS software, so that responsibilities for these functions can be
assigned to one or the other.

These two conceptual idealizations — 1) an underlying component architecture
for CDS, and 2) modularity of CDS, in that its tasks and responsibilities can be
separated from those of the application environment with which it interacts — are
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helpful to better understand how to design CDS in a portable, reusable, maintain-
able fashion. I believe that, in adopting this approach, it will also be possible to
design more robust versions of existing CDSs that have the ability to interoperate
in other platforms, be adapted to differing application settings, be maintained and
updated more readily, and thus be more widely disseminated and used.

So this chapter is about design principles. But as you will quickly conclude, this
topic is a work in progress. There are many complexities, nuances, and unresolved
questions yet to be answered by researchers and developers in this field. My goal is
to call attention to these design principles and challenges as a framework for further
work, in the belief that this will help to accelerate our progress in dissemination and
adoption.

3.1 CDS and the human

A central characteristic of CDS is that it is intended to interact with and give advice
to a human being. Our focus has been primarily on clinical decision support to
health care providers, generally physicians and nurses, but also sometimes phar-
macists, technologists, and other personnel. Many of the same principles apply to
patient-centered decision support, with its added complexities of health care liter-
acy, language, and mental models. Sometime CDS will involve processes for shared
decision making between a health care provider and a patient, family member, or
other caregiver. We discuss patient-centered decision support in Chapter 27.

The ability to provide advice to a physician has in many ways been a disruptive
innovation, to borrow a phrase from the business world (Christensen and Raynor,
2003), in terms of traditional perceptions by physicians of their roles and responsi-
bilities, and the practices and relationships that derive from those perceptions. Over
the years I have collected cartoons clipped out of magazines and journals, portray-
ing the use of computers in health care. Almost all of these relate to some sort of
role of computers or information technology in making decisions. This focus no
doubt exemplifies the way most people first think about computers if asked to con-
sider their potential role in health care.

In one cartoon, a patient is consulting a computer and the computer is advis-
ing, “Take two interferon tablets and call me in the morning.” In another, several
surgeons around an operating table are discussing an operation they are about to
perform. One is saying to the other, “Since it’s been reported that 24% of surgery
is unnecessary, let’s only do 76% of the procedure.” In yet another, a patient is
entering a question into a computer and the response is “Not tonight — I have a
headache.” Another cartoon with an operating room venue shows a surgeon with
two hearts, one in each hand, looking across the table at his colleague and saying,
“Okay, the old one is in my left hand and the donor’s is in my right, correct?” A
final cartoon shows a doctor examining a patient. The patient has an arrow in his
back, unseen by the doctor. The doctor says, “I'm pretty sure it’s psychosomatic,
but let’s run some tests to be sure.”
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The humor in these cartoons has to do with the exaggeration of two opposing
views of the relationship between the computer and the human, whereas a suitable
relationship likely lies somewhere between these extremes.

3.1.1 Computer as omniscient sage

On the one hand, an extreme view is portrayed in which the computer’s expertise is
taken for granted, and its pronouncements are accepted quite literally; the computer
is essentially running the show. The popular image of computers in medicine is that
they are devices that are capable of storing vast amounts of information, performing
lightning-fast computations, and making accurate decisions. The cartoons are funny
because they start from that assumption and carry it to an absurd extreme. The com-
puter may be seen as patronizing and even arrogant.

3.1.2 Computer as out-of-touch meddler

The opposite extreme is the traditional view of resistance by physicians to comput-
ers and to automated guidelines as being too simplistic and representing “cookbook
medicine” — with the typical warning that computers are insensitive and incapable
of recognizing the nuances of patient care, the role of physician judgment, and the
prerogative of the physician as primary decision maker.

3.1.3 A more symbiotic view

In actuality, the use of computers in health care has taken a rather conservative,
circumspect, and circuitous route to participating in clinical decision making. That
route is clearly between the two extremes of the human ceding control to the com-
puter and the human not being willing to use the computer for decision support at
all. Later in this chapter, we discuss a number of dimensions along which the nature
of the human-computer interaction in CDS can be considered, including locus of
control and degree of assertiveness. The extent to which the interaction is skewed
in one direction or another along either of these or other dimensions will depend
on the application and purpose, but it will rarely be entirely in one direction on
all dimensions. As will be exemplified in a number of case studies and historical
reviews in Section II, when CDS has been successfully deployed, the computers
usually have been used primarily in an advisory or educational role, in providing
input to the practitioner or patient, who ultimately is responsible for making all
decisions. This is why, when we discuss CDS in this book, it will largely be with
that perspective — in other words, the emphasis is on decision support, not on deci-
sion making.

I mentioned earlier that CDS is a sort of disruptive technology. One manifesta-
tion of this is that there has been a change in patient attitudes toward their doctors,
both in recognizing the limitations of knowledge and judgment of physicians as a
group, and in an increased tendency to question a physician’s decisions and desire
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or demand to participate in the decision-making process. Further, whereas in the
past, physicians were reluctant to consult an information source such as a textbook
or a computer in front of a patient for fear that it be regarded by the patient as a
sign of indecisiveness or lack of knowledge, there is growing evidence that the abil-
ity to look up the latest information is regarded by both patients and doctors as nec-
essary and desirable (Ogden et al., 2002; Weaver, 2003).

Only in limited circumstances in clinical medicine might one consider using
the computer directly in a closed-loop fashion to collect data, analyze the data,
make decisions, and take actions without human intervention. Probably the most
notable exception is the implanted electrical cardiac pacemaker, which has algo-
rithms for determining when to stimulate the heart automatically in response
to heart rate or rhythm abnormalities. Patient ventilators can do some automatic
manipulations, such as use of feedback control to adjust cycling thresholds to main-
tain a desired pressure level, adjustments to keep PEEP/CPAP pressure at specified
levels to compensate for gas leaks, or modification of ventilator flow delivery rate
to adapt to changes in patient inspiratory effort. However, any such use requires
considerable caution and documentation of efficacy, and is done only after an
arduous process resulting in regulatory approval from the Center for Devices and
Radiological Health of the Food and Drug Administration (FDA) in the United
States (US) (Hackett and Gutman, 2005), or from comparable agencies in other
nations (Altenstetter, 2003).

In most situations, the human remains in the middle of the decision-making
loop. The guiding settings on a ventilator are still determined by a human, after
viewing data obtained from the device and other information such as blood gas test
results. Insulin infusion pump settings are still adjusted by humans, after review-
ing laboratory and clinical data, even though the device could presumably have an
algorithm for automatically responding to the most recent blood glucose labora-
tory result in the EHR. For clinical decisions that are not integrated with embedded
or connected devices, recommendations are not implemented without the express
approval or action by the human.

3.1.4 Limitations of the technology

Given our present state of the art, computers can usually be expected to provide
only relatively unsophisticated decision support, and computer models of human
decision making remain limited. This relates primarily to two factors. First, many
kinds of data and nuances regarding patient findings are either not captured by a
computer or are encoded in a form that the computer can interpret, but which an
experienced clinician not only has access to but can use more effectively. Second,
some of the nuances of the decision process that could potentially be captured may
not even have been encoded in the model used by the computer, but which a physi-
cian routinely considers. Because of the limitations of both the data available to the
computer and the model used, it is thus important for the physician to check the
reasonableness and appropriateness of a CDS recommendation before acting on it.
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A further difficulty is that some of the applications of CDS that have been pur-
sued are quite complex, for example, determining a differential diagnosis, decid-
ing on an optimal work up strategy, and doing treatment planning. Thus it is not
surprising that most of the success to date has been in the form of simpler kinds of
CDS, where the modeling of the decision problem and capture of the nuances
of data are much less challenging. Examples of such kinds of CDS include the use of
single-decision rules in targeted settings, such as in CPOE for providing checks
of medication doses against recommended ranges, or verifying the absence of aller-
gies or recognized drug interactions; or in checks of results of newly arrived labo-
ratory results against normal ranges in order to alert physicians of abnormalities.
Though these are considerably easier to implement, even they have subtleties and
nuances that must be considered for successful implementation. For one thing, the
simpler the rules, the less they take into account a variety of mitigating factors that
affect the clinical significance of the potential recommendation. But increasing the
patient-specificity and sophistication of the rules requires more data, and of course
access to the EHR. Also, to avoid redundant alerts and the well-known problem of
“alert fatigue” (see Chapter 1), the logic should take into account past history of the
condition and also check whether a similar alert has been generated within a speci-
fied “alert-fatigue avoidance” time window. Accounting for such factors makes the
rules and the maintenance of them much more complicated, as a result of which the
rules are no longer simple (Lee et al.,, 2010; Embi and Leonard, 2012; Kawazoe
et al., 2013).

Last, replication of some of the approaches shown to be successful in early-
adopter settings often has been problematic for a number of other reasons beyond
the decision model and the availability of the data. Factors have been both techni-
cal, cultural, and organizational in nature, which we will discuss in greater detail
next, and in subsequent chapters, particularly in Sections IV and V of this book.
For example, as discussed briefly in Chapter 1 and at the beginning of this chap-
ter, when we consider the use of computers in interaction with human beings,
an important issue that needs to be carefully addressed is how that interaction is
regarded by the human user in terms of decision-making control, responsibility,
and judgmental prerogatives. Other factors include the manner of interaction of the
program with users in terms of impact on their ease of performance of operational
tasks, time required, and effect on workflow procedures and processes, particularly
as they relate to clinical IT services.

As we pointed out in Chapter 1, another reason for the gap in adoption has to do
with underestimation of the complexity of the tasks involved in replicating an innova-
tion such as CDS on a widespread basis, given the need for it to be well integrated
with clinical information systems, actual workflow, and business and health care prac-
tice patterns in each site; and given the need for it to be readily updated and adapted
to changing requirements. Challenges in deploying CDS at each site are introducing it
in a way that is acceptable to the individuals who will be required to use it, being sen-
sitive to the culture, work style, time constraints, self-image, and other cultural and
social factors of these individuals and the organizations in which they participate.
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3.1.5 Considerations regarding human-computer interaction

Computers have long been regarded ambivalently as both a boon and a possible
threat with respect to their interaction with humans, particularly for decision mak-
ing. The field of artificial intelligence was specifically created more than 50 years
ago with the aim of exploring the nature of intelligence, including the processes
of acquisition and representation of knowledge and the ability to carry out reason-
ing and problem solving (Feigenbaum and Feldman, 1963). This has involved both
research studies and demonstrations centered on how to make intelligent computers
as autonomous entities. We see a number of applications of this kind of pursuit in
the form of advances in robotics, chess playing and other strategic game-playing
programs, speech recognition, and automatic language translation. A notable recent
example was the challenge by Watson, an IBM software system, against three
champion players on the popular television show Jeopardy!, in which the task is to
state a correct question for which a trivia fact is provided as an answer. Needless to
say, Watson defeated the humans, relying on vast storehouses of facts and relations,
accumulated from text processing and clever programming (IBM Research, 2013).

The problem of trying to build intelligent autonomous computers is a fascinat-
ing one, but this has less direct applicability in health care than the use of comput-
ers in partnership with humans. Many of the same methodologies are used as in
the pursuit of autonomous intelligent computers, but an additional focus is on the
nature of the interaction between the computer and the human (Johnson, 1994). Our
concern here, as we have noted, is the role of the computer as a decision-support
tool rather than as a decision-making entity.

What is the best way in which an “intelligent” computer should interact with a
human to provide CDS? There are several possible modes of interaction: First, a
computer can be in charge of the interaction, delivering recommendations or deci-
sions that are expected to be carried out, and at the right point of time. This mode
could be used, for example, in CPOE, when an attempt is made to order a medi-
cation with a dosage that is outside of therapeutic limits for safety. The computer
should be able to either actively stop such orders from being processed or passively
avoid them by not providing the means to enter (or select) such doses in the first
place. In another sense, however, the choice of ordering the medication is still made
by the physician, and it is typically only when the entered or attempted order needs
to be overridden by the computer, because the dose is outside of therapeutic range,
that the computer exerts control of the interaction.

A slightly less assertive version of computer control is a mode in which a
human decision maker can override the computer by providing a justification for an
action to which the computer has raised a warning. An example of this mode of use
in order entry systems is when a procedure is ordered by the user for an indication
that is not recognized by the computer as being among those generally accepted,
but which is nonetheless permissible (Harpole et al., 1997).

Relaxing the constraints still further, consider the mode in which a computer
presents a data entry form or dialog box to be completed by the user. The entries
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in the form are checked for validity, e.g. to ensure that they are within range of
values expected for the requested items or that they match a controlled list of pos-
sible entries; or the computer may require that entries be chosen from a drop-down
list. Thus the kinds of allowed input are controlled by the computer, but within that
scope, the user may make any desired choices. Following entry of data, subsequent
displays or forms can be made available to the user, and the sequence and nature of
the interaction guided by the computer in response to user entries. An example is a
predefined order set for medications and procedures, in which a physician might be
interacting with the computer to order most of the procedures but also to customize
some of the options. Standard dosage forms of medications might be offered, both
to encourage those choices and to make it faster for the user, if he or she chooses
them, but still allow entry of alternative dosing regimens.

If we consider shifting the focus of decision making further in the direction
of user control, several modes of interaction are possible. In one mode, the user
performs various actions, and the computer analyzes them in the background, dis-
playing a warning when the action is considered to be dangerous or inappropriate.
Among the earliest experiments aimed at refining this approach was a series of
studies carried out by Miller and colleagues (Miller, 1983; Miller and Black, 1984)
on “critiquing systems.” As discussed in Chapter 2, the primary applications inves-
tigated were in management of hypertension and anesthesia. In the critiquing mode,
the computer made comments and recommendations for modifying notes and
orders already created by the physician, which the physician could accept or reject.
A more contemporary application is the typical circumstance in CPOE in which a
physician is able to select choices for medications and doses directly, but the com-
puter identifies some of the chosen orders or doses as contraindicated in this patient
because of interactions or allergies or inappropriate dose (Kuperman et al., 2001),
and advises the user of alternative actions that may be more appropriate.

A somewhat more passive mode of interaction is one in which the computer
gathers statistics about the performance of users over some period of time and pro-
vides feedback to the users about how they compare with their peers. This can be
regarded as more an educational type of intervention than as CDS unless it is pro-
vided in a highly patient-specific context. It has been shown to have mixed success,
and appears to be most effective when coupled with a concerted educational initia-
tive and buy-in by the physicians of this kind of decision support (Mugford et al.,
1991, Bindels et al., 2003; Bodenheimer, 2003; Greenhalgh et al., 2005).

One of the primary targets for concerns about CDS invading a physician’s
autonomy is the use of clinical practice guidelines, especially those that are com-
puter-based. Although clinical practice guidelines have abounded in magazines and
journals, been distributed on CD-ROMs, and are maintained on Web sites, they
are rarely used in clinical practice by physicians, except as education or reference
resources. In the care of a specific patient, the experience is often that the guideline
does not capture the nuances of the patient, and/or does not embody what the physi-
cian believes to be best practices in his or her institution or in the current setting or
to correspond with his or her own experience. There is some justification in these
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complaints. Clinical practice guidelines, however comprehensive they may be, usu-
ally cannot specify the details of every possible combination of circumstances that
might arise in practice. If they could do so, nonetheless their rendering in a print
or display medium for easy comprehension and use would be a significant chal-
lenge. Even for standardized guidelines such as those for hypertension management
(NHLBI, 2004), a flow chart rendering of the various alternative pathways for man-
agement would take up many pages.

Another problem with clinical practice guidelines is that many of the charac-
teristics of patients may be outside the scope of the guideline, for example, other
concurrent diseases or medications that can alter the nature of the current condi-
tion; or the presence of findings that are not available to the computer-based guide-
line, for example, those that relate to nonverbal subjective assessments that can
best be made face-to-face and are difficult to articulate in words. Finally, even the
most well-researched, evidence-based guideline may not have achieved 100 percent
consensus among experts, and alternative modes of care may exist that would be
equally appropriate. Thus, guidelines can be best used in a mode in which they pro-
vide suggestions or advice when requested, but do not force compliance.

Due to limitations such as those just cited, the idea of clinical guidelines tends
to conjure up some of the worst associations with the term “cookbook medicine”
(Liang, 1992; Harding, 1994; Costantini et al., 1999) that we mentioned at the out-
set of this chapter. At their base, the objections relate to the view that medicine is
too complex to be reduced to a set of algorithms or rules, and that it could never
be codified to an extent similar, for example, to that which enables an autopilot
to fly an airplane. But, in fact, no one is advocating the autopilot as a model for
computer-based decision support in health care. Autopilot operation is successful in
airplanes largely because the procedures and operations of normal flight are highly
predictable, based on data that can be objectively gathered. As a result, rules for
decision making can be fully specified and implemented. Autopilot systems also
can be made “aware” of settings in which their use is not appropriate (e.g. take-
off and landing) and circumstances in which something happens that is outside of
their realm of decision making, such as the occurrence of a combination of param-
eters for which there is no defined rule. In such situations, either automatically or
through pilot initiative, they have a mode in which the pilot can take over control
or override their operation. In the autopilot setting, the computer is more in control
than the human most of the time, but the initiative can switch to the human. There
are situations in health care that can approach this, for example, the aforementioned
closed loop systems of implanted cardiac pacemaker devices, or other applications
that potentially could become semi-automated, such as intravenous infusion sys-
tems for medication administration or patient ventilator management systems for
adjusting O, levels or cycling thresholds of the ventilator. Also, guidelines and pro-
tocols can be used by physician assistants and nurse practitioners to deliver care in
routine situations such as management of sore throat or routine prenatal care, where
there is also a clear understanding of when to escalate the care to a more experi-
enced provider.
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In general, the cookbook response stems from misconceptions regarding the
ways in which clinical practice guidelines can be useful in CDS. Computer-based
guidelines can be made more patient-specific in several ways. First, they can be
freed of the constraints of paper or screen display of static algorithms, by sup-
porting the identification of a variety of possible entry points and the eligibility/
applicability criteria for these entry points, and by supporting more flexible means
for browsing and navigation of pathways and access to explanatory materials
(Abendroth and Greenes, 1989). Second, guidelines can be made arbitrarily more
complex and nuanced with respect to patient findings (subject to limitations on
available evidence, author expertise, and author fortitude in delineating all of these
circumstances), since the need to render the guideline in static form is no longer
an issue. Third, the guideline can be decomposed into parts that can be deployed
in various application settings, such as those parts best used during CPOE, those
that would be most appropriate as alerts or reminders, or those that should be con-
sidered during the patient assessment and progress-note-generation process (Essaihi
et al., 2003; Wang et al., 2003). Fourth, these parts can be specified precisely so that
they can operate on entered or stored EHR data and produce their recommendations
automatically (Tu et al., 2004). The issues involved in automating clinical guide-
lines are discussed further in Chapter 13.

We will return to the general issue of interaction with the user when we discuss
the process of integrating CDS into application environments later in this chapter.

3.2 Design and structure of CDS

Many opportunities exist for performing CDS. Two reviews in the early to mid-
2000s have developed taxonomies of features (Sim and Berlin, 2003) and modes
of use (Kawamoto et al., 2005), respectively, for clinical decision support. The
Kawamoto study (Kawamoto et al., 2005) and a follow up to the Sim study (Berlin
et al., 20006), in particular, are noteworthy in identifying those forms of CDS that
have been evaluated in clinical trials. Such schemes, as they are further refined, can
be expected to be helpful in continually evaluating instances of CDS in terms of
their focus and the settings and modes of their deployment to determine which are
most effective.

In this section we propose our own schema for considering CDS, in terms of (1)
its purpose, and (2) the architecture and component design elements required for
providing it. Design elements include the decision model, knowledge content, data
requirements, result specifications, and application environment factors affecting
deployment and use. Since one of our main objectives is to understand what factors
have held back widespread adoption of CDS and to identify ways of increasing this
adoption, we will analyze aspects of this schema to help us answer these questions.
The questions to be addressed encompass the kinds of standards and infrastructure
that may be needed, the kinds of business and organizational strategies that can be
useful, and the kinds of approaches that can be used to encourage wider adoption.
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3.2.1 Purpose

We now turn to a consideration of the many possible goals or purposes for which
CDS might be intended (Table 3.1). Purpose is somewhat orthogonal to the clas-
sification of methodologies we described in Chapter 2. Thus, as we consider the
various purposes for CDS, we identify the key methodologies that have been used
for their implementation. Since references to those methodologies are cited in

Table 3.1 Principal purposes for CDS, and the key methodologies used
Purpose Key methodologies

Answering questions Direct hyperlinks from context-specific settings, context-
specific information retrieval, use of agents and information
brokers, infobuttons as instance of the latter, or ultimately, a
“personal guidance system”

Making decisions Gathering data, analyzing the data, and providing
recommendations for assessments or actions

e Diagnosis Bayes’ theorem, algorithmic computation, heuristic reasoning,
statistical data mining/pattern recognition methods

e Test selection Decision analysis, logical rules/appropriateness criteria, and

logistic models and belief networks for risk prediction (e.g. for
screening decisions)

e Choice of treatment  For choosing among alternatives, decision analysis, and logical
rules/appropriateness criteria, including increasingly genotype
considerations. For dose modifications for age or factors such
as renal function, algorithmic computation. For dosimetry or
dose distribution, algorithmic computation based on geometric
and pharmacokinetic models, with use of heuristics and
statistical methods for optimization

e Prognosis Logistic regression, Markov modeling, survival analysis models,
and quality of life assessment scoring methods

Optimizing process Multistep algorithms, guidelines, and protocols, coordination

flow and workflow of participants by workflow modeling, scheduling, and
communication methods

Monitoring actions Use of ECA rules, with background detection of events, in

real-time or asynchronously, logical evaluation of conditions,
and issuing of messages. Events can be a user activity such as
choice selection or data entry, a result arrival, or the passage

of time
Focusing attention Organization and presentation of items in data entry, display,
and enhancing or reporting applications. May be done by use of sequences to
visualization encourage intended behaviors, by a process flow model such

as an underlying guideline, and/or by visual groupings based
on shared attributes such as purpose, medical subdomain, or
application context. May also include dashboards, trend plots,
or other summarization and visualization methods that make it
easier to identify key elements needed for decision making
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Chapter 2, we won’t repeat them here, but we do cite other aspects of methodology
or examples of use not fully discussed in that chapter.

3.2.1.1 Answering questions

The simplest goal for CDS is to provide context-specific access to relevant infor-
mation for a human user at the time of problem solving or decision making.
Hyperlinks to specific resources at specific points in the interaction with a clini-
cal IT system provide one such way to do this. An example would be a link to
laboratory tests and their normal ranges, or to a list of medications in a hospital’s
formulary.

More sophisticated approaches involve using intermediate search tools, such as
information agents or “bots” to go out to diverse sources and report back (like Web
crawlers or spiders), and “information brokers,” which can map queries to the for-
mats required as input by external knowledge bases and then map the responses to
a form recognized by the requesting source. The goal is to find resources relevant
to a particular context, including patient-specific parameters. For example, in a lab
test result review context, the display of a lab test result might be accompanied by an
infobutton (Cimino et al., 2002) that, when selected, dynamically retrieves available
resources about the test, such as normal ranges, textbook materials regarding the use
and interpretation of the test, information about the diseases in which it is abnormal,
and a list of MEDLINE references on the clinical use of the test. As discussed in
Chapter 2, an HL7 standard for an Infobutton Manager (Del Fiol et al., 2012) to be
able to invoke external resources by context in a consistent manner has been adopted,
encouraging use of this approach. One can imagine increasingly sophisticated ques-
tion answering systems (Yu and Cao, 2008; Del Fiol et al., 2013; IBM Research,
2013; Jonnalagadda et al., 2013) being automatically invoked in these contexts to
provide highly specific information for decision making.

3.2.1.2 Making decisions — about diagnosis, test selection,

choice of treatment, and prognosis

This purpose, in contrast to the more generic task of finding information just dis-
cussed, is specifically for help in analyzing information needed for a decision. This
can be for a variety of types of decisions, including making diagnoses, selecting
tests, planning therapy, and estimating prognosis.

We have noted that differential diagnosis has been among the uses of CDS that
have most captivated interest from the earliest days of computer use in health care.
An excellent book edited by Berner (Berner, 2010) focuses largely on diagnostic
decision making, and reviews the many approaches that have been pursued. The
basic goal of differential diagnosis is to deduce, from a set of findings, the diagno-
sis that best explains them. This is clearly an important task, not only in order to be
able to select proper treatment but also to be able to estimate prognosis and to give
advice to the patient.

It should be recognized, however, that diagnosis is not usually a single event,
but rather a process of continually refining knowledge about the patient by

.
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gathering data, performing tests, and re-evaluating data, until sufficient confirma-
tion is reached in order to take therapeutic action. Some approaches, such as deci-
sion analysis, appropriateness criteria, and clinical guidelines, have focused on
structuring this process, rather than on the endpoint of diagnosis. Indeed, the deci-
sion table approach for representing a guideline (Shiffman and Greenes, 1991), as
illustrated in Table 2.3 in Chapter 2, doesn’t even choose a diagnosis, but deter-
mines next actions based solely on combinations of findings. Issues that must be
considered in this view of diagnosis as a process relate to the selection of appropri-
ate tests based on cost, risk, inconvenience, and other factors versus the potential
for information gain from the tests. When one considers the fact that the institution
of treatment is also a diagnostic test, in terms of providing information about how
the patient responds to it, it can be seen that the whole patient care process continu-
ally involves diagnosis in the form of ongoing reassessment. Prognosis estimation
can also be regarded as a type of diagnostic assessment, in that it characterizes the
patient’s current state of health as one with a particular expected survival rate and
quality of life.

For the purposes of exposition, we can divide the topic of making decisions into
methods for hypothesis formation or refinement, both for diagnosis and prognosis
estimation, and those aimed at performing an action (e.g. test selection, or choosing
or detailing a treatment regimen), as depicted in Figure 3.1.

Diagnosis. The process of diagnosis can be subdivided further into detection
and classification. Although some screening recommendations remain controver-
sial, the number of tests in use for screening purposes is sure to increase as a result

Hypothesize:
diagnose,
estimate prognosis

Test Treat

FIGURE 3.1

Medical diagnosis as an iterative process of forming hypotheses and gathering data

to confirm or refute the hypotheses. Prognosis estimation is a form of hypothesizing.
Treatment is a form of test, in that it also provides data that can help to confirm or refute
hypotheses.
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of progress in understanding of the genetic basis of disease and development of bio-
markers. Screening tests in common use include, among many others, testing for
phenylketonuria (PKU) in newborns, mammography in older women or those with
certain risk factors, colonoscopy in average-risk patients over age 50, and pros-
tate-specific antigen (PSA) testing in older males. Generally, screening tests have
been applied primarily to alert the user to the detection of the possible presence of
disease, rather than to make detailed specific diagnoses. The typical approach in
screening is to set a liberal operating point (decision threshold) on the ROC curve
for considering the test to be positive, on the basis of the view that it is preferable
to err in the direction of more false positives than to fail to detect cases of disease
(false negatives). Although some assessment tools for supporting CDS in this realm
(such as computer-aided detection and diagnosis (CAD) image processing methods
in digital mammography (Jiang et al., 1999; Giger, 2004)) try to classify the find-
ings in terms of specific diagnosis, the ability in screening tests to make diagnoses
is usually quite limited, and further testing is typically required. A particular cau-
tion is raised by Kohane et al. (2006), with respect to whole-person genome map-
ping, because of the huge potential for false positives and induced tests to further
evaluate them, which the authors refer to as the “incidentalome”.

Methods used for both detection and classification (diagnosis) include Bayesian
probability revision, algorithmic approaches (e.g. for electrolyte imbalance), heu-
ristic reasoning and weighting of findings (e.g. DXplain (Barnett et al., 1987)), and
statistical data mining/pattern recognition methods such as logistic regression, clas-
sification and regression trees, and artificial neural networks.

Test selection. This set of clinical decision-making problems relates to
whether and when to do screening, what test to use for screening or for diagnosis,
and determination of need for and selection of follow-up testing, including refer-
ral to consultants/specialists. Test selection decision support relies on prior work
by researchers in technology assessment including ROC analysis, and comparative
effectiveness research (CER) (Sullivan et al., 2013) studies to determine relative
performance characteristics of competing alternatives, and work by health policy
analysts and payers using clinical decision analysis and benefit-cost analysis to
establish the optimal pathways that sequence the use of these in terms of maximiz-
ing expected utility, and formalizing these into a set of logic rules or appropriate-
ness criteria.

The decision to obtain screening tests or follow-up tests may be modified on
the basis of CDS tools, such as those for estimating a patient’s risk of breast cancer
based on risk prediction models (Rockhill et al., 2001; Freedman et al., 2005), and
policy recommendations/guidelines such as those of the American Cancer Society
for early detection of cancer (Smith et al., 2004). A major resource for such rec-
ommendations is the US Preventive Services Task Force, which weighs evidence
and publishes periodic recommendations on prevention and screening testing
(USPSTF, 2013).

Treatment decisions. Needs for CDS include picking the most appropriate
therapy, and determining dose or dosage administration regimen. Picking therapy
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involves trade-offs of cost, risk, benefits, and patient preferences. Thus, as in the
case of test selection, treatment recommendations can be developed by researchers,
including economists and policy analysts who rely on comparative effectiveness
research, decision analysis, survival analysis, and benefit-cost analysis. Optimal
strategies may be issued by professional societies and payers, and codified as logic
rules and appropriateness criteria, or in the form of clinical practice guidelines.

For dose determination, CDS can be used to constrain choices, make it easier to
select preferred choices through displayed groupings such as order sets, or verify
dosage requests as being within acceptable ranges. In some circumstances, CDS
can be used to calculate dose modifications, for example, using pharmacogenomic-
based rules that recognize the effect of particular gene markers on the respon-
siveness of the patient to a dose, based on body surface area in pediatrics, or as a
function of renal status or age; these rules tend to be algorithmic. Dose administra-
tion determination may involve more elaborate considerations, as in the case of an
insulin sliding scale, or calculation of portals and beam configurations for radiation
therapy. These tend to be algorithmic, but may use heuristics and pattern recogni-
tion and statistics for optimization.

Prognosis estimation. The CDS question here is to predict the likelihood of
good outcomes, morbidity of various types, and mortality. Thus prognostic evalua-
tion of consequences should be an important consideration before treatment selec-
tion. Database prediction, as in systems like ARAMIS (Bruce and Fries, 2005), is
an ideal approach when the data are available and sufficiently structured. Methods
of analysis include logistic regression, classification and regression trees, Bayesian
network modeling, and artificial neural networks. Methods for modeling future
chance processes, such as Markov modeling and for assessing quality of life, such
as the calculation of quality-adjusted life years (QALYs) (Richardson and Manca,
2004) or severity of illness, such as the Apache III score (Kim et al., 2005), are
essential underpinnings.

3.2.1.3 Optimizing process flow and workflow

We have described multistep algorithms, guidelines, and protocols in Chapter 2
as a more complex form of CDS. They arise and have use in a variety of settings,
because medical care often requires sequences of tasks, with intermediate decision
points and pathways. The intent is to help to guide the user in the proper sequence
of decisions and actions, to be sure all appropriate alternatives are considered, and
to avoid proceeding along inappropriate pathways.

An example is the progression from less expensive and simpler tests to more
expensive and invasive procedures in the evaluation of heart disease or breast can-
cer. Another is the initiation of single-drug therapy for hypertension, with adjust-
ment, substitution, or addition/deletion of medications based on response, side
effects, and complications. These are best conveyed to a user by clinical practice
guidelines, flow charts, protocols, or flow sheets.

Sometimes multiple tasks, such as orders for tests and procedures, must be done
concurrently, but the next step must await at least some of the results from those
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tests and procedures before proceeding; and the entire process may involve mul-
tiple participants (both human and information-system-based). In these settings,
the coordination and communication among participants are important, and a goal
is thus to improve workflow, and to maximize speed or efficiency. In this circum-
stance, augmenting guidelines with workflow management capabilities is desirable
(Ciccarese et al., 2005).

In other settings, data may change quite rapidly; for example, in an emergency
or intensive care unit setting, and the status of patients needs to be assessed at a
glance in order to identify who needs near-term attention versus those that are less
critical. CDS in the form of dashboards and alarms/alerts that portray these chang-
ing statuses can be helpful in such settings. This is further discussed in Chapter 22.

Last, in clinical trials and in some procedures such as renal dialysis, strict adher-
ence to the steps of a protocol are essential, and a CDS tool can help to ensure that
this occurs.

3.2.1.4 Monitoring actions — guarding against errors, providing

warnings, alerts, reminders, or feedback about performance

While decision support may provide information when sought, or by overtly asking
for it (e.g. by invoking a differential diagnosis tool, a dose calculator, or a clini-
cal guideline), another form of decision support works in the background without
overt action of the user, and only interacts with the user when there is a reason to
do so. This can occur either in the background of real-time interactive applications
between a user and the computer, such as in CPOE, or can be asynchronous and
decoupled from user actions (e.g. notification by paging or e-mail about arrival of
an abnormal test result).

The computer essentially functions as a guardian or silent partner, monitoring
the clinical context and what the user is doing, and either interrupting or contact-
ing the user when situations arise that necessitate this. For example, if a poten-
tial order is determined to be hazardous (e.g. a medication interacts dangerously
with one that the patient is already receiving, or to which he or she is allergic),
a warning can be displayed. If a radiological procedure is being ordered for an
indication that is not determined to be appropriate, e.g. ultrasound for a potential
appendicitis when a CT would be better in most patients, or if a medication is too
expensive, is not on an approved formulary, or a generic medication would be an
appropriate substitution, a recommendation for the alternative can be displayed.
If a critical abnormal laboratory result is obtained, an alert can be triggered that
notifies the physician so that appropriate action can be taken. The passage of time
may cause reminders to be generated, as for periodic mammograms in a woman
over 50, or for flu shots during the winter season for an elderly patient. If a patient
has been in an ICU longer than an expected number of days for his or her diagno-
sis, the physician can be notified.

In all of these cases, the background alerts, reminders, or feedback may be con-
sidered useful or thought to be inappropriate or unjustified. A challenge in provid-
ing this kind of decision support is to minimize the situations in which they are
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inappropriate, lest the false alarms become annoying or in the worst case, are
simply ignored because of their frequency. The conditions for generating messages
must be properly defined to be as helpful and pertinent as possible, and the way in
which alerts are provided must allow them to be overridden when justified.

3.2.1.5 Focusing attention and enhancing visualization

Another form of CDS is quite indirect and subtle. This is the encouragement of best
practices through use of techniques to organize and present information and options
in such a way that they serve to enhance recognition of important aspects and
remind or facilitate good choices. This may be done either by providing a frame-
work for describing sequences of interactions between the computer and user, such
as dialogues that are controlled by an underlying guideline or flowchart, by associa-
tive groupings of documentation elements on display screens or printed forms and
documents, or by a variety of visualization methods.

With respect to the associative grouping of elements, in particular, if it is
done well, it can not only focus attention, but can also offer benefits of improved
efficiency, because groups of items can be either selected as a unit when accept-
able, or at least brought together for consideration and action decisions rather
than each element needing to be sought for by a user and selected or entered indi-
vidually. Order sets are an example, in that the grouping of orders for a particu-
lar indication, such as admission to the cardiac ICU, is pre-established for ease of
use by a physician and for ensuring that the physician does not forget to consider
including medications for control of pain and anxiety, and for anticoagulation, vital
sign and ECG monitoring, diet, cardiac enzyme testing, and other typically consid-
ered tasks. If done well, such order sets have the virtue that they not only encour-
age desirable actions but also, by anticipating likely actions, facilitate workflow and
save time.

Besides order sets, another application of this approach to CDS is the design of
data entry forms for structured capture of information. Examples might be a form
for recording a neonatal visit, an anesthesiology preoperative note, or a specialist
referral for cardiac surgery evaluation. The form can include items that are auto-
matically filled in, where possible, from stored data. It can include suggested items
that are predetermined to be important, and thus serve as both a handy checklist for
recording them and as a reminder to be sure to do so.

Yet another illustration is the generation of reports from structured elements, for
example, the printout of a prescription order, or the production of a postoperative
note or discharge summary. The design of the report is intended to be easy to auto-
matically generate from stored elements, consistent in appearance, independent of
the user who produced it, and well formatted and organized. Such predictability (as
well as legibility) facilitates readability and usefulness.

Lastly, we include in this group all forms of visualization that tend to
facilitate appreciation of data and their trends, and recognition of situations
that may require attention or action. This includes graphics and trend plots,
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summarizations, dashboards, and flow sheets. The goal is to support cognitive
tasks for managing complexity, usability of systems, and workflow to lead to opti-
mal decision making.

3.2.2 Design of CDS: components and interactions

We now consider the structural aspects of CDS. We do so by identifying a set of
functional components of CDS and its invoking environment, and how these com-
ponents interact. As I noted at the beginning of this chapter, this discussion is some-
what artificial, in that it presents an idealized model of how CDS should be created.
What I mean by “idealized” is that, if the design of a CDS capability clearly identi-
fies each of these components, separates them cleanly, and addresses the design of
each component in a standardized way, the goals of widespread dissemination and
use of CDS can be greatly facilitated. We focus on the idealized model while recog-
nizing that much of CDS is not implemented that way. I maintain that all the com-
ponents we discuss next that are needed for CDS are present in one form or another
in any implementation, but they are not always separable, in terms of the actual
software code that implements them. Nonetheless, we can consider these compo-
nents and the functions they perform individually, at least from a conceptual point
of view.

Another idealization I adopt is to refer to a unit of software that provides CDS
as a CDS module. The heart of a CDS module is a method of transforming input
parameters to a patient-specific output. To be modular, the CDS software should
be cleanly separable from surrounding or invoking software code, communicating
with it via a well-defined interface. Recognizing the many possible implementation
methods for CDS that may not be modular at all, we nonetheless use this term to
direct our focus to the portion of software directly concerned with the provision of
CDS functionality, and to the nature of the interactions by which it relates to the
invoking environment.

To provide CDS, several tasks must be performed, as shown in Figure 3.2:

e The CDS module is initiated or invoked by some process in the application
environment.

e The module obtains data through an interface with the application environment,
where the data are entered by a user, retrieved from the EHR or other source,
or provided directly by the invoking entity. The latter might include context-
specific information about the application, user, setting, and function being
performed.

e The module applies knowledge (e.g. facts in the form of rules, algorithms,
or semantic relations), that is either local to the module, or retrieved from a
knowledge base.

e A process is then executed that transforms the input parameters and knowledge
according to the specification of some sort of decision model to generate a
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FIGURE 3.2

A conceptual model of CDS design components and their interactions with the host
application environment.

patient-specific output. The decision model is usually embodied in an algorithm
or computational procedure of some sort.

e The module then produces a result that must be communicated to the applica-
tion environment. That result is usually a recommendation for action.

To carry out this process, the design of a CDS module conceptually has four
design elements, or components, and operates in conjunction with an applica-
tion environment, which is thus considered to be the fifth component (see Figure
3.2). The application environment determines how and when the CDS module
gets invoked, how it obtains data and communicates its results, how it interfaces
with host software and hardware, and how it interacts with its users. The applica-
tion environment can be so varied that the specification for this component is only
defined with respect to CDS in terms of the nature of the CDS module’s interac-
tions with it.

3.2.2.1 Decision model/execution engine

All kinds of CDS have some kind of execution paradigm, that is, a method of
organizing or processing input information, to produce some kind of output, or
result. The sequence in which data are requested and the algorithm or method for
processing data depend on an underlying model of the decision problem. For exam-
ple, an alert or reminder may be designed to be triggered by an event, such as a
mouse click, the arrival of a lab result, or the passage of time, to obtain specific
data items. The process then evaluates a Boolean logical condition expression about
the data, to determine the truth value for the expression. If the Boolean condition
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evaluates to “true,” the alert or reminder may then cause an e-mail, page, or dis-
played message to be generated, in order to notify an appropriate physician. The
decision model in this is Boolean expression evaluation.

A differential diagnosis program may collect data and evaluate the diagnostic
possibilities using Bayes’ theorem: the Bayes’ theorem algorithm is the underlying
decision model. A dose therapy calculation tool might use a formula that needs
such parameters as body surface area, renal status, or age to make recommenda-
tions for modifications of medication dose for children, those with kidney failure or
the elderly; the decision model is a computational formula.

The decision models that are used in CDS rely principally on the methods dis-
cussed in Chapter 2. These include:

1. Information retrieval; that is, the model by which data and knowledge are used
to select pertinent items to retrieve

Logical expression evaluation

Probabilistic and data-driven classification/prediction

Heuristic methods and expert systems

Calculations, algorithms, and multistep processes

Associative grouping of elements; that is, the model determining what these
associations are and under what conditions they are activated.

carwN

Conceptually, we can consider that the decision model, to the extent that it
involves computational processes, is embodied in an execution engine. The execu-
tion engine is the part of the CDS software that evaluates data to produce output.
As we have noted, actual implementations may not cleanly separate this code from
other parts of an application, or even from other parts of the CDS module itself, but
advantages can be realized if that can be done. Principally, this separation allows
the execution engine to be refined and enhanced as improvements in the way it
should operate become understood. Also, this provides flexibility and portability, in
that the execution engine can be recoded and reimplemented in different platforms
independently of other CDS parts, and can even be embodied in external services
(see Chapter 29).

3.2.2.2 Knowledge content resources

Sometimes, as in an application for recommending electrolyte replacements in
acid-base disorders, the calculations and sequences of actions are embedded in soft-
ware code. However, as we noted earlier, it is often helpful to implement the gen-
eral methodology of a particular decision model as an execution engine that can be
used to apply the method to all knowledge of that type. For example, if the electro-
lyte replacement algorithm can be represented in a flow chart modeling formalism,
then a guideline execution engine can run it. To be most flexible, ideally, the knowl-
edge — the formulas or equations, the logic of production rules, the flow charts, and
so on — should exist external to the “engine” that accepts inputs of that type, pro-
cesses the knowledge, and produces a result. Separating the knowledge from the
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engine, when it is possible to do so, enables the engine to operate on a variety of
similar kinds of knowledge.

e As aconsequence, the knowledge resources can be managed independently.
For example, they can be authored and edited through use of a knowledge
editor tool.

e With appropriate editor functionality, an editor tool can display the knowledge
in a form that is readable by a human subject expert rather than requiring the
skills of a software engineer or other technical support person.

e If the knowledge is made transparent in this fashion, maintenance, review,
and update are easier to do.

e If a standard format is used for encoding the knowledge, or for importing
and exporting it from external repositories, the knowledge can be shared and
disseminated.

e If the decision model evolves, e.g. in terms of the ability to use more refined
or detailed knowledge, the knowledge base can be updated separately to
incorporate those knowledge elements.

Knowledge content resources can be structured or unstructured, depending on
the purpose and the computational requirements of the decision model. For exam-
ple, if the purpose is simply to retrieve and display information in human-readable
form, the only structure required might be the use of index terms or keywords, to
facilitate retrieval by a search engine, although with no structure at all, a text-based
search such as by Google® is still possible.

If the knowledge is a logical expression for a production rule, then the expres-
sion must obey the syntactic conventions needed to evaluate the expression in
whatever language or formalism is used. In MYCIN, one of the earliest rule-
based systems in medicine, production rules had the format IF condition THEN
action, where condition was a Boolean logical expression with “certainty factors”
associated with the terms. The execution engine could evaluate the conditional
expression and had an algebra for combining the certainty factors to produce an
updated certainty factor associated with the assertion in the action part of the rule
(Shortliffe, 1976), and could control the sequence of execution of rules through a
goal-driven, backward chaining heuristic. In alerts and reminders in Arden Syntax
(Hripesak, 1991), an evoke section defines triggering event(s), a data section speci-
fies the data elements used, a logic section defines the procedure to evaluate the
data elements in a Pascal-like syntax, and an action section defines the task to be
carried out if the logic section evaluates to frue. An Arden Syntax interpreter or
compiler could then serve as an execution engine to process a knowledge base of
Arden Syntax rules, evaluating a rule when triggered by appropriate evoking condi-
tions. GELLO (Sordo et al., 2004), a more recent HL7-approved ANSI-endorsed
standard expression language supporting HL7’s version 3 Reference Information
Model (RIM) (RIM, 2006), defined an object-oriented syntax for specifying logical
conditions. Knowledge bases encoded in GELLO expressions could be evaluated
by a GELLO execution engine. Still more recently, in 2013, the Health eDecisions
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initiative sponsored by the US Office of the National Coordinator for Health IT
proposed a model-based framework for exchange of computable knowledge arti-
facts, which has been approved as an HL7 standard (HL.7_HeD, 2013). This speci-
fies a model based on ontologies for identifying events, conditional expression
syntax and clauses, and actions, and for specifying data and knowledge elements
needed in CDS rules, order sets, and documentation templates. Based on this for-
mal modeling process, knowledge can be exported in XML or can, if adapters are
written, be converted into any other model formalism and its associated expression
language.

The knowledge base for a Bayesian diagnosis tool would be the prior
probability distribution for the diseases to be considered, and the conditional prob-
abilities of findings for each of the diseases (Warner et al., 1964; Lodwick, 1965;
deDombal, 1975).

A guideline interpretation engine that is designed to support traversal of a
guideline and interactive acquisition of data and evaluation of conditions to deter-
mine next steps could operate on guidelines encoded in a knowledge base accord-
ing to a formalism that the interpretation engine understands. Examples of this
are the guideline engines supporting representation formats known as Proforma,
GLIF, EON, Asbru, and SAGE, as discussed in Chapter 2 and reviewed further in
Chapter 16.

3.2.2.3 Information model
CDS requires a precise specification of the kinds of information the computation
model will utilize, which we refer to as its information model. The knowledge con-
tent resources typically contain statements, facts, conditional expressions, or other
relations that refer to or operate on patient-specific data. If we formally specify
the information model, this provides flexibility in that the same CDS resource can
be used in more than one kind of setting; for example, interactively with a user
as well as in background mode, retrieving data from the EHR, and in more than
one platform and system environment. The specification must include not only
the format of the data that the CDS module receives and uses but the taxonomy
or coding scheme for its labels and also for any of its coded/categorical values,
and the restrictions on value sets that are allowable. For example, if one is seek-
ing to run a rule about medication interactions, it is important to know that they are
encoded in RxNorm (NLM, 2005), or that a diagnosis is encoded in SNOMED-CT
(SNOMED, 2006), or that a lab test is encoded in LOINC (Regenstrief, 2005).
Value set restrictions may confine the medications of interest to angiotensin con-
verting enzyme inhibitors, or diagnoses to cardiovascular diagnoses, or lab tests to
particular enumerated tests. The specification should also involve grounding the
data elements in terms of precise attributes like units, method of obtaining them,
time frame, etc. This is discussed further in Chapters 17 and 18, in terms of docu-
mentation elements or archetypes.

Note that beyond defining these requirements, the adaptations necessary for
accessing or obtaining them are not the province of the CDS module but of the
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application environment. If the data are to be obtained by interaction with a user,
the host may also need to include an external display name for a data entry field. If
the input that is allowed needs to be validated (e.g. checked for limits of a numeric
range, length of a text string, the presence of valid characters, or conformance with
items on a predefined pick list or dictionary), then those criteria for validation (and
the content of the pick list or dictionary) need to be adapted from the information
model or added by the application environment.

If the data are to be retrieved from a stored repository, then either the informa-
tion model used in the host application environment should be the same, or a pro-
cess for mapping the data elements from it needs to be established. Some of the
data elements may need to be transformed, if differences in the definitions of those
elements in the host EHR and in the CDS module’s information model require it.
For portability of CDS, the use of a standardized information model such as the
HL7 v.3 RIM, for example, should be used to evaluate a GELLO logic expres-
sion. In general, it is unlikely that real operational clinical information systems will
use a standard reference information model (such as the HL7 RIM or some other)
directly in its implementation. Thus for interoperability between systems, or to use
externally developed CDS, a mapping would need to be developed for each imple-
mented vendor-specific system between that standard reference information model
and the vendor system information model.

Arden Syntax uses a different approach, in which each Arden Syntax rule’s data
section allows customization to indicate how the various data elements should be
retrieved from a particular host information system. This information is encoded
within curly braces, indicating that it is not part of the general rule, but is host-
system-specific. The disadvantage of the Arden Syntax approach is that each rule
must be customized individually for each host system. Also, even if multiple rules
all refer to similar data items, each rule must include the customization statements
for each of the data items.

3.2.2.4 Result specification

Operation of the CDS execution engine is carried out with the goal of producing
some output, whether in the form of retrieved resources, a calculated result, a rec-
ommended action, or a data entry screen or formatted report. Since the result is
dynamically determined through execution, there needs to be an explicit process for
determining how that output gets produced.

The result specification could be regarded as part of an expanded view of the
information model, but we consider it separately because of its distinct role in the
CDS process. Note that the result of a CDS process can be a set of one or more val-
ues of clinical parameters, but it can alternatively be an action (possibly including
clinical values). Actions are verbs like notify, schedule, order, cancel, etc.

For example, the result of evaluating an Arden Syntax rule to frue might be an
action to be performed, such as to send a specific message to the attending physi-
cian. A calculation of dose of a medication based on adjustments for renal func-
tion or age might produce a result in terms of a modified recommended dose.
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A Bayesian differential diagnosis program’s result would be the set of diagnoses
with their posterior probabilities. Traversal of a clinical practice guideline algorithm
based on evaluation of entered or retrieved patient-specific data values would pro-
duce a result at each step, indicating the optimal next step.

Thus conveying the result to an application environment involves mapping
the result to the performance of actions or production of outputs that the applica-
tion expects to carry out. This will largely be the responsibility of the application
environment, as discussed in the next section. What is needed in the CDS module
is a taxonomy of kinds of results that can be produced from decision support, to
facilitate such host mappings. Some early work in the execution of clinical guide-
lines (Essaihi et al., 2003; Tu et al., 2004) produced such a taxonomy. This has also
been pursued further in a CDS Taxonomy produced by the National Quality Forum
Committee on CDS (NQF, 2010), and in the action ontology of the Health eDeci-
sion knowledge model (HL7_HeD, 2013).

Modularity of design is one of the reasons that we consider the result specifica-
tion in CDS separately from the mode of interaction with the user or applications in
the application environment. Just as with the specification of the information model
for data used in the decision model, separation of the result specification enables a
decision support capability to be adapted to several possible modes of interaction
in any of a variety of applications on different platforms. For example, the result
could be provided in real-time in interactive applications, in the background in alert/
reminder usages, or in batch mode in the production of reports or summaries. If the
result is a set of one or more values, this might call for the EHR to be updated with
that information. If the result is an action to be performed, this needs to be interpreted
by the host environment in terms of its ways of performing that action. For exam-
ple, an action may call for a physician to be notified about an abnormal value, which
could be done by e-mailing the physician, displaying an interruptive popup message
on a screen, transmitting the recommendation to another application, or storing it in a
pending task list to be seen when the physician next logs into the system.

3.2.2.5 Application environment

As we have seen, many of the features of CDS operation are not embodied in the
CDS module itself but in the application environment that invokes it. The applica-
tion environment determines how the CDS module communicates with a user, such
as via an interactive dialogue, or obtains data from the EHR or other sources, and how
it conveys its results. The application environment can also pass to the CDS module
certain context data such as those describing the application setting, the user, and the
purpose.

The degree of integration of CDS with applications is one of the most critical
factors for determining its success, yet too tight an integration limits the ability
to achieve portability and reuse of CDS modules. We will begin the consideration
of the nature of the interaction of a CDS module with the application environ-
ment by revisiting a simple example we used in Chapter 2 to illustrate the range of
options to consider and the complexities involved — even for a simple form of CDS.
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The example relates to the set of rules regarding the handling of abnormal and criti-
cal laboratory test result values; in other words, results that exceed predefined limits
and require flagging or, for critical results, urgent attention. The knowledge regard-
ing such abnormal values can be found in the literature, and the simplest form of
decision support is the ability to retrieve references to such abnormal values. This
could be in the form of bibliographic citations or Web sites displaying laboratory
values and their accepted normal ranges and critical values. Ideally, those latter
sites should also cite references to the literature about how to interpret them.

The least integrated way to make this information available would be to enable
the user to access the Web and to do a search for it, using his or her own search
terms. Slightly more integrated access would be a resources page, which would
have a set of predefined links to useful reference information that could be accessed
from the clinical IT system. To be of greater value, it would be useful to have
access to this information at the point at which a physician is reviewing laboratory
results for a patient. The difference between looking up lab result values to deter-
mine whether they are abnormal and having a direct link to a particular citation
giving that information in the context in which it is needed — that is, when the lab
result is being reviewed — is that in the latter case the information needed is prese-
lected and automatically available to the user.

A more useful way to provide this information, which is done in most clinical
systems, is to automatically flag the abnormal lab result on the report or display
screen that is reviewed by the provider, by a symbol indicating that it is outside of
normal ranges. This could then be combined with a link to the available citations
to give further information. The flag indicating abnormality could be introduced by
the clinical laboratory information subsystem or by the laboratory results report dis-
play application, using a formal logical condition expression that is evaluated by
the computer to determine the presence of abnormality. Thus it could occur at any
of three points; either at the time the result is produced in the laboratory subsystem,
when it is entered into the EHR, or when it is displayed.

Another way to deliver an abnormal result finding is by generating an alert
message that is sent to the provider, perhaps by e-mail, text page, or interruptive
alert. This requires integration into a clinical information system in such a way that
information about the particular patient and the appropriate provider are able to be
identified automatically. This would also allow more elaborate decision rules to
determine whether the result is new or a repeat of an already abnormal value about
which the physician has previously been notified, or if there are coexisting condi-
tions that might explain the result (e.g. renal failure).

To be maximally useful, knowledge in the form of a decision rule such as
that used for responding to abnormal laboratory test results would exist in a rules
knowledge base and be triggered by a variety of different possible event scenarios —
for example, the entry of an abnormal lab result into the patient’s clinical record,
a medication order interaction check with respect to existing lab results, or the
flagging of abnormal laboratory results on review by a physician. With the knowl-
edge in a knowledge base, different events such as result entry, order placement,
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or display of results could trigger evaluation of the rules indexed according to the
various parameters of interest, to determine which, if any, might apply, and then
to carry out actions that are appropriate based on the triggering application and
depending on the result of the evaluation. For example, in an alerting application,
evaluation of the rule to true would result in the generation of a warning message
to the provider by e-mail, page, or other means of communication. In an interactive
CPOE application, evaluation to true might generate a recommendation in the form
of an immediate interactive popup or inline message to decrease the dose of a medi-
cation being prescribed. In the result display application, evaluation of truth would
result in the flag symbol indicating abnormal result being appended to the value.

The first usage described, that of displaying a citation, simply requires that the
knowledge about abnormal lab results be available in text form in some defined
location (e.g. in a bibliographic database). It requires no computability, just the
ability to retrieve it.

The second usage, access via a direct link from the result information display,
can be done by manually identifying the appropriate citation to be displayed when-
ever abnormal results occur. To be more useful, however, retrieval based on the
context, for example, could work as follows: By recognizing that the context is a
laboratory results display application, the CDS tool could determine that informa-
tion pertaining to abnormal laboratory results would be useful, and a specialized
retrieval program could be designed to select the kind of information to be retrieved
from a general retrieval search engine by passing context-specific parameters
related to clinical laboratory abnormal results. This constitutes a kind of “informa-
tion broker” function, and is exemplified by the infobutton manager described in
Chapter 2 and further elaborated in Chapter 19.

The third usage — that of flagging abnormal results — requires the presence of a
formal computable expression that can be evaluated by the computer. This would be
of a logical format such as “if lab test result y exceeds threshold a then return true.”
For this to work, the value of the lab test result of interest must be assigned to the
parameter y and the upper normal range for the lab test result must be assigned to
the parameter a. The software application must also know that if the result True is
returned from the evaluation, then a flag value such as * or # should be appended
to the display of the laboratory result. Thus this application usage requires a formal
expression, an evaluation engine, and a simple set of data parameters that can be
passed to the evaluation engine and returned from it.

The fourth usage is the execution of a generalized rules interpreter in the context
of an event-driven architecture, in which particular rules are evaluated as a result of
triggering events, and the actions performed depending on the result of the evalua-
tion are a function of the application that generated the trigger. This approach not
only requires a knowledge base, an indexing scheme for accessing the rules in the
knowledge base, and an execution engine, but it requires also a means of integra-
tion with various possible invoking applications, as well as, for example, in the case
of notifications to physicians, the ability to invoke other applications. This usage
has maximum flexibility and power, because the same piece of knowledge — in this
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case, any logical expression regarding what constitutes an abnormal laboratory test
result value — can be used in a variety of different contexts. Thus the decision rule
itself only needs to be developed once, and can be maintained or updated if neces-
sary in one place, and if properly set up, all the applications that utilize it can be
identified, should there be a reason to change the rule in the knowledge base.

We can consider a variety of other kinds of clinical decision support usages that
range from passive to active and from loose to tight integration with applications,
and do a similar decomposition of the necessary elements. Work needs to be done
to define the extent to which application-specific behavior can be further abstracted
into a taxonomy of result types, as discussed earlier, so that more of the functional-
ity can be moved into CDS modules rather than requiring custom interfacing and
handling of results in the application environment.

3.2.3 Modes of interactions

One of the challenges in providing CDS is that of determining the most effective
way to interact with humans, so that the advice is as patient-specific and timely as
possible. At the same time, it must be acceptable to the human user, by not requir-
ing a lot of extra work, being disruptive to workflow, or being redundant. Also,
given the role of decision support rather than decision making, advice must be
given in a fashion that recognizes human decision making prerogatives and avoids
being inflexible or insistent when it is not necessary.

Figure 3.3 lists a set of axes that can serve as a guide for thinking about the vari-
ous dimensions involved in providing CDS and interacting with users, which deter-
mine the extent and manner of integration of CDS with the clinical IT application
environment. We consider each of these briefly.

3.2.3.1 Locus of control

A CDS instance can be initiated by a user when the need for help is recognized;
for example, in seeking to find an answer to a question, or obtaining assistance in
assessing a diagnostic or therapeutic decision. Or it can be initiated by the com-
puter, such as in processes aimed at monitoring user actions to guard against errors
or detecting suboptimal practices; for example, in detecting an inappropriate order,
or a time interval at which a mammogram should be ordered or HbAlc level should
be checked. The locus of control thus either resides with the user or the computer
in these examples. There are also intermediate situations, in which CDS resources
are made available and have the means to automatically be context-aware, as in
infobuttons or patient-specific guidelines, but it is up to the user to initiate their use.

3.2.3.2 Degree of assertiveness

Decision support capabilities can be provided to a user with varying degrees of
insistence or “assertiveness.” This only applies, of course, to settings in which the
computer is the locus of control and initiates the CDS instance. The most passive
way in which decision support can be offered would be to simply present a dis-
cussion of a topic that can be read by the user. One step up from this would be
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Locus of control

FIGURE 3.3

Dimensions of computer-user interaction in CDS.

to present specific recommendations and advice, although again in a form that is
simply to be read. A slightly more insistent form of decision support would be the
requirement that the information provided be acknowledged. A further increase in
assertiveness might involve a list of choices of action; for example possible medi-
cation regimens, allowing “other” as an additional option or an override of the
recommended dose of a medication if a justification is provided. Still more asser-
tive would be forced choice among alternatives without the possibility of override.
The most active form of decision support would be a closed loop process in which
actions occur automatically in response to inputs, although these could be inspected
or monitored by a user. Implanted cardiac pacemakers use this mode of operation,
but for reasons we have noted previously, there are very few other instances of such
closed-loop processes in routine use.

3.2.3.3 Patient specificity
Comprehensive knowledge base resources, such as the medical literature in
PubMed, a guideline repository, or a collection of possible alerts and reminders, are
important to the ability to provide robust decision support. But a challenge in deliv-
ering effective decision support is to be able to select resources that are relevant for
a given patient and to determine when and where, or even if, they should be used in
a particular setting.

To accomplish this, the CDS module needs to be able to obtain information
about the clinical problems or findings, care setting (e.g. office visit, phone call, or
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hospitalization) and other patient-specific parameters, as specified by the logic of
the rules under consideration. This involves the ability to access the EHR or obtain
data from the user or from the invoking application.

3.2.3.4 Context
Beside the patient characteristics and setting of the clinical encounter, context affects
the nature of decision support in several ways. The principal contextual factor is the
kind of application and the function being performed when CDS is invoked. For
example, if the context is an interactive CPOE program, decision support would
likely need to be very responsive so as not to perceptibly delay or impede the real-
time interactivity. If the context is a background process aimed at collecting data
on and evaluating conformity with care pathways in various units of a hospital (e.g.
the coronary care unit or the postoperative orthopedic floor), it might be suitable to
communicate deviations from expected targets to providers at the beginning of the
workday or at rounds. Event-driven panic alerts indicating critical abnormal labora-
tory values would need to be communicated to providers by any available means as
quickly as possible and require acknowledgment. Preventive screening or immuniza-
tion reminders to a patient might have a response window of a week or even a month.
The same knowledge can be used in different contexts and practice settings. To
return to an example discussed earlier, consider a rule that performs an action if a
lab result exceeds a threshold: this might be used in an alert that is automatically
triggered when a result is produced by the laboratory, or the rule might be used dur-
ing the generation of a lab test result review display screen, for flagging abnormal
results. The multiplicity of uses and contexts for decision support knowledge is one
of the rationales for the need to construct knowledge bases containing collections of
decision support content. The content in a knowledge base can be indexed or meta-
tags provided pertaining to various axes, such as those relating to context, setting,
medical problem, and CDS purpose, that enable specific knowledge to be retrieved
and used when needed. Another consequence of this capability is that it would be
necessary for only one instance of a particular item of core knowledge (e.g. a deci-
sion rule,) to exist, making it easier to maintain the knowledge, review it, update it,
and propagate changes to all the applications that use variations of it.

3.2.3.5 Interactivity
Somewhat related to the classification of decision support in terms of degree
of assertiveness, patient specificity, and context is the degree of interactivity.
Knowledge resources may be in the form of static human-readable information,
such as text or a table, retrieved in response to specific search. Such a presenta-
tion could be viewed and examined but require no specific action by the user. An
interactive mode of delivery of this same information would be one for which some
entry or acknowledgment is required by the user.

A more interactive form of CDS might be a computational tool that produces
a similar kind of text or tabular report, but which provides the ability to manipu-
late parameters that are entered into it, as, for example, a computation tool for drug
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dose calculation based on body surface area, or a tool for performing sensitivity
analysis of a decision analysis model to determine how stable its decision is as a
function of change in the estimate of prior probability of disease or the riskiness of
a treatment. Often, interactivity occurs in CDS in the form of requests for data to be
entered or selection of options by the user.

Still other aspects relating to interactivity are illustrated by the various ways in
which recommendations can be communicated to the user and the options avail-
able to the user for responding to or overriding recommendations. Some decision
support messages might be provided in the form of noncritical alerts or reminders,
generated in the background and only seen when a user next logs into the infor-
mation system and requiring no further action on the user’s part. Alternatively, for
more important alerts or reminders, they might be sent by e-mail or pager. Various
graphical renditions, dashboards, or summaries might be available as options for
viewing complex data and relationships.

3.2.3.6 Degree of integration with clinical IT applications

A CDS capability can be integrated into the clinical information system to greater
or lesser degree. CPOE is an example of an application with a need for a high
degree of integration of CDS. A drug interaction checking tool would be most use-
ful during CPOE if it were integrated with another system that maintained a list of
current medications for the patient. Given the EHR, a CDS tool could also include
automatic checks against allergies or other patient-specific contraindications.

3.2.3.7 Single vs. multi-party focus
Some applications of decision support, such as computer-based clinical practice
guidelines, have the potential for optimizing the care process by suggesting appro-
priate next steps. In a busy practice environment or inpatient setting, automation
of guidelines could also help to optimize workflow by coordinating scheduling and
use of resources and activities of participants through communication and synchro-
nization functions (e.g. don’t do task B until task A is completed), and monitoring
the times, delays, and statuses of expected events. Note that the parties involved
may be human or computer-based (e.g. a scheduling system or messaging system).
Notification of alerts is another example of an application that may have a
multi-party aspect. Typically, if a critical lab result needs to be acted on by some-
one, there is a set of processes defined for notifying a patient’s primary physician
about such an alert (e.g. some sequence of page, telephone message, e-mail, or text
message, with requirement for acknowledgment), and a defined sequence for noti-
fication of other providers if that person does not respond within a specified period
of time.

3.2.3.8 Intended user

Decision support for various purposes may be designed for different kinds of
intended users; for example, direct support of physician decision making; aids to
nurses, pharmacists, laboratory or radiology technologists, emergency medical
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technicians (EMTs) or paramedics; reports of utilization of resources, errors, or
costs to managers; or information resources and decision aids for patients and the
general public. The kind of knowledge involved, the decision-making approach
used, and the mode of operation may vary considerably depending on user and
purpose.

3.2.3.9 Explicit vs. indirect support

Calculation tools, guidelines, alerts, and reminders all are designed to give spe-
cific advice or recommendations. But the other kind of decision support we have
included is one in which the organization, grouping, sequencing, or mode of visu-
alization of information presentation is intended to foster optimal decision making
in a more subtle manner, simply by focusing attention, serving to remind the user of
items that might otherwise be forgotten, encouraging systematic consideration and
possibly influencing prioritization. We mention again some examples of this mode
of decision support, namely the use of structured data entry forms, order sets, tem-
plates for reports and summaries, dashboards, flow sheets, and protocols.

3.3 Other considerations

We have touched on a number of settings and contexts in which decision support
could be used, but which will not be discussed in detail in this book. One of the pri-
mary other uses is in the realm of education and training. Not only can decision sup-
port knowledge bases be useful as educational reference tools, but the decision support
can be used directly in a dynamic way in case-based problem-solving exercises —
simulations of clinical problems requiring intervention by a user and feedback
about the appropriateness of the actions taken. Methods analogous to CDS may be
used to generate a range of variation of clinical parameters in a simulation, with the
inclusion of a random component as well. CDS-like capabilities can be used in a
critiquing mode, in which actions are performed by the user first and then evaluated
by the CDS-like resource for conformance with the underlying decision model (e.g.
a guideline). Or decision support may be used in what is known as an “intelligent
tutoring system” mode of operation, to probe student responses or actions in terms
of their similarity to prototypical problems in such situations, and to tease out the
underlying misconceptions.

We will not delve further into image and signal processing, pattern recognition,
and feature extraction, as these are largely embedded in niche applications, and our
focus is on more generic CDS capabilities and the issues of deploying them in a
health care enterprise.

Much of the development of CDS to date has been something of an art form,
with creative individuals identifying innovative and useful ways of providing it and
showing effectiveness. Because of a lack of well-defined principles, the discov-
ery process often has had to be replicated by others, sometimes with painful and
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disappointing results. The collective body of experience in the literature is nonethe-
less quite large.

Although there is new impetus to moving ahead, the lessons of the past need to
be recognized if we are not to be destined to repeat the mistakes that have limited
progress over the past 50 years or more. A goal of this book is to begin to move
toward a formal understanding of the requirements for CDS, based on the lessons
and experiences of the past, clarifying an understanding of the requirements for
infrastructure, standards, and business/organizational strategies that will lead to
success.

The task of providing and maintaining robust CDS capabilities is a long and
complex undertaking. It is important not to oversimplify it, or to rush to deploy
CDS without adequate preparation, lest unsatisfactory results occur, bad press be
generated, and an era of discouragement take hold. We seek to increase awareness
and understanding of what the effort requires and to begin a systematic approach
to tackling the problems that have vexed the field and held it back over these many
years.
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