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11.1  Introduction
Clinical decision support (CDS) systems must rely on knowledge that originates 
from a variety of sources, including domain literature, expert knowledge, and 
statistical analysis of data. However, selecting the sources and integrating this 
knowledge into a functional system is not a trivial task. The earliest systems for 
medical diagnosis, in the 1960s, used Bayesian probability models (as discussed 
in Chapter 2), relying on either databases of patient data or subjective estimates of 
prior and conditional probabilities from human experts. In most early CDS sys-
tems developed in the 1970s and 1980s, because of the dearth of available data and 
the interest at the time in the burgeoning field of artificial intelligence, knowledge 
was acquired directly from medical experts (as discussed further in Chapter  10). 
In some systems, pioneered by an antibiotic treatment advisor program known as 
MYCIN (Shortliffe et al., 1975), knowledge was encoded in the form of rules that 
were triggered and chained according to an embedded or an external inference 
engine (Shortliffe, 1976). In MYCIN, rules were expert-derived and had associ-
ated certainty factors, a mathematical formulation of a quasi-statistical representa-
tion of degree of belief, developed by Shortliffe et al. (1975) Various approaches to 
medical diagnostic reasoning from this period such as the Present Illness Program 
(Pauker et  al., 1976), Internist/QMR (Miller et  al., 1982; Miller et  al., 1986), 
DXplain (Barnett et  al., 1987) (still in use) and others that were developed sub-
sequently were constructed from a set of physician-based assessments of (a) the 
strength with which clinical findings evoke a certain diagnosis, (b) prevalence of 
diseases, and (c) related indices. As noted by Heckerman and colleagues, the formal 
mathematical definitions of these indices in terms of probabilities have not been 
fully elucidated Heckerman and Miller (1986).

Even when newer knowledge representation strategies incorporating statistical 
data, such as Bayesian networks (Pearl, 1988), were proposed by some researchers 
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in the late 1980s (Heckerman, 1990; Beinlich et al., 1989), definition of the graph 
structure and probabilities involved in the model were usually still assessed by 
experts. For example, Shwe and colleagues (Swhe et  al., 1991) “translated” the 
QMR representation into Bayesian networks, and showed that the same diagnostic 
quality could be achieved with a representation that made explicit important mod-
eling assumptions. However, the popularity of Bayesian networks in the medical 
community did not grow as expected, and this type of model is still primarily used 
in the medical domain primarily for research purposes, with very few exceptions. 
Reasons for this limitation may include the need for severe model simplifications 
in order to make these models practical for clinical use. These simplifications may 
in turn reduce the main advantages of using Bayesian networks, which include their 
explicit knowledge representation combining a sound probabilistic modeling of 
dependencies with a visually appealing display. Algorithms for learning Bayesian 
networks from data have evolved in the past two decades but are also primarily 
used in research applications (Cooper and Herskovits, 1992; Buntine, 1996; Moore 
and Lee, 1998).

Most clinical decision support systems in current use do not learn from data and 
still rely on the rule-based paradigm, mainly in the form of single IF/THEN rules 
(see Chapter  15) or as computer-interpretable guidelines (see Chapter  16) which 
chain together steps in a care process using branching decision rules. In both cases, 
although probabilistic considerations have usually gone into constructing the rules 
or guidelines, using evidence-based medicine techniques (see also Chapter 12), the 
rules and guidelines tend to be stated in a deterministic fashion, without associated 
probabilities.

There are at least two factors that contribute to this predominant reliance on 
expert assessments for the construction of CDS systems:

●	 Data are either not available or not structured enough to allow knowledge to be 
“learned” from them.

●	 Techniques to discover patterns in data are not well disseminated or not well 
evaluated in the biomedical community.

A potential third factor may be that systems derived from human knowledge 
in which nonprobabilistic rules are defined by experts may be more clearly under-
standable by clinicians. For example, if an expert can articulate all the rules that 
were used to make a diagnosis and how they were chained, then a system based 
on these rules can potentially explain its reasoning in a way that clinicians would 
be able to understand and accept (Clancey, 1983). Whether understanding and 
agreement by clinicians is necessary for the underlying logic in CDS systems to 
be useful remains a controversial issue. Although, as noted above, decision support 
applications currently in use in clinical environments rely in large part on determin-
istic rules for their “logic,” this should not necessarily mean that other approaches 
are not as good or perhaps even better. For domains in which structured data are 
abundant, and the decisions are made at times in which a snapshot of these data 
could help identify specific patterns, pattern recognition algorithms from the 
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fields of statistical and machine learning can be of great value. This is, of course, 
becoming especially true in the era of genomics and of “big data,” as we discuss in 
Chapter 2, in which it is both important and increasingly feasible to base decisions 
about a patient on a comparison with the experiences of a subset of maximally sim-
ilar patients. The number of factors to be considered and their combinatorics make 
the task of developing a rule set to cover all of the variations in genomic risk fac-
tors, presence of disease, stage of disease, comorbidities, treatments, and complica-
tions of treatments more and more intractable. Chapter  13 discusses the growing 
opportunities for harnessing population health data for decision support.

There have been extensive new developments in statistical and machine learn-
ing research in the past few decades. These advances have coincided with improve-
ments in data quality and quantity from the implementation of large repositories of 
structured electronic data, some of which are based on domain-specific data ele-
ment standards (Cannon et al., 2001; Wattigney et al., 2003; Pollock et al., 1998). 
Increased availability of data has allowed the further development of several models 
that can detect patterns in biomedical data and generalize well to previously unseen 
cases. Clinical decision support systems that rely on patterns that are recognized 
in these data are now available in virtually every medical specialty (Knaus et  al., 
1985; Grundy et  al., 1999; Shaw et  al., 2002; Goldman et  al., 1982; Baxt 1991; 
O'Leary et  al., 1998). Just as in the foregoing discussion relating rule-based sys-
tems and more sophisticated knowledge representation paradigms, simple under-
standable models (e.g. linear and logistic regression and linear score systems) have 
far outweighed in number and utilization the more sophisticated machine learning 
models (e.g. support vector machines, neural networks, and recursive partitioning 
algorithms), many of which remain limited to research applications.

Although many studies have shown the efficacy of CDS systems, several recent 
studies have found that implementation of CDS may not improve quality of care 
(Romano and Stafford, 2011) and, in some cases, may result in adverse outcomes 
(Han et  al., 2005) or experience less than optimal performance (Saverno et  al., 
2011). These cautionary tales, coupled with the release in the US of the Stage 1 
(2010) and 2 (2012) Meaningful Use Final Rules, which include functional require-
ments regarding the implementation and expansion of CDS capacities, coupled 
to reimbursement, have led to the publication of several guidelines on “best prac-
tices” for CDS implementation, by the Institutes of Medicine, AHRQ (Das and 
Eichner, 2010), and numerous domain experts. Among these recommendations is 
the improvement of specificity and sensitivity in CDS systems for personalized 
medicine and reduction of alert fatigue. Probabilistic modeling-based approaches to 
CDS have been shown to achieve some of these goals in research settings, and there 
is a slowly increasing uptake in the use of probabilistic modeling methods embed-
ded in CDS systems.

In this chapter, we will review the methodologies of the most commonly used 
diagnostic and prognostic models in the medical domain, and discuss specific 
strengths and weaknesses of alternative modeling methods. Popular examples of 
some modeling methods will be discussed. Since our focus is on models that have 
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been utilized in practice, the discussion will concentrate on logistic regression mod-
els, classification trees, and artificial neural networks. We conclude with a discus-
sion on current directions for the field.

Note the absence of sections dedicated to other topics that have received wide 
coverage in the computer science literature, but that in fact have limited representa-
tion in clinical informatics applications and are beyond the scope of an introductory 
chapter. For example, although rule-induction algorithms and kernel-based classi-
fiers such as support vector machines (Boser et al., 1992) have often been utilized 
in research applications, few actual applications are used in clinical practice, and 
therefore we elected not to cover these models in this chapter. Refer to statistical 
and machine learning textbooks for a review of these topics (Duda et  al., 2001; 
Hastie et al., 2001).

Another omission is the discussion of optimization techniques such as genetic 
algorithms and evolutionary computing (Koza, 1992), and formalism extensions such 
as fuzzy logic (Zadeh, 1994) and rough sets Pawlak (1982). Elements of these tech-
niques can be used in conjunction with the classifiers discussed here in a number of 
different ways, but they do not constitute classifiers themselves. Furthermore, there 
are no examples of practical use of these techniques in clinical decision support.

11.2  Learning from data
Statistical and machine learning pattern recognition algorithms have been in exist-
ence for several decades. These algorithms recognize regularities in data and con-
struct a model that can be utilized in new cases. Interest in this type of method 
has increased in the past two decades, with the addition of new algorithms such 
as neural networks and support vector machines (Vapnik, 1995). A myriad of pub-
lications in the scientific and lay literature can now be found under the rubric of 
“data mining.” Data mining techniques are pattern recognition techniques intended 
to find correlations and relationships in the plethora of data. The term is intriguing, 
but also somewhat misleading. Most pattern recognition or predictive models used 
in clinical domains are confirmatory rather than exploratory in nature. The distinc-
tion between unsupervised and supervised learning models is directly related to this 
issue.

Unsupervised learning models are not based on predefined classifications and 
are used frequently for exploratory data analyses in domains in which knowledge 
is sparse. For example, high-throughput data are often subject to unsupervised 
learning modeling so that “clusters” of variables or objects can be revealed without 
guidance from the users or the existing literature. The objective is to unveil hidden 
patterns in the data that were not previously anticipated, and label these patterns “a 
posteriori.” This is in sharp contrast with supervised learning models, in which the 
objective is to determine how to best classify objects with predefined labels rep-
resenting classes of interest (e.g. malignant versus benign cases) using the data at 
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hand. As expected, unsupervised learning models have not been applied in clinical 
decision support systems and have a limited role in this area. All models in cur-
rent use for clinical decision support have been based either on expert knowledge or 
supervised learning models. The latter is the subject of this chapter.

In order to understand how a model can be derived from data, it is useful to con-
struct an artificial example. Suppose a researcher does not know the range of nor-
mal values for a new diagnostic test, but she does have a large data set indicating, 
for a set of patients, the value of the test and the actual diagnosis for each patient. 
Also suppose that there are missing and noisy data in the data set. The task is to 
determine the range of normal values for the test, so that when anyone examines the 
value for a new patient, it would be possible to declare, with a certain level of con-
fidence, whether the result pointed to an abnormality or not. While one might not 
need a sophisticated model to answer this simple question, it would be necessary to 
review all labeled data to determine optimal thresholds to label a result as “normal” 
or “abnormal.”

This analysis can extend to several tests and clinical findings, and multiple pos-
sible diagnoses, in which case the task is to find optimal combinations of values 
that are most frequently associated with particular diagnoses, since a single test 
or clinical finding in isolation may not suffice. Researchers would have to exam-
ine several thousands of records containing dozens of attributes for each patient to 
determine which combinations of variable values seem to be most likely to be asso-
ciated with each diagnosis. Given time and memory limitations, it might be difficult 
to build this type of classifier. For this type of problems, utilizing multivariate tech-
niques that “learn” from data can be very helpful.

11.3  Overview of logistic regression
The first step towards the construction of a predictive model is the selection of the  
variables that are going to be considered, from a data set containing large numbers 
of cases. The number of cases needs to exceed the number of variables; a well-
known heuristic is that the number of variables utilized in a model should not 
exceed one tenth of the number of cases. The type of modeling technique needs 
also to be selected. Logistic regression is by far the most popular method for con-
structing predictive models in medicine (Lemeshow and Le Gall, 1994). This type 
of classification model usually deals with binary outcomes such as diagnosis of a 
certain disease or condition (e.g. myocardial infarction), or prognosis within a cer-
tain period of time (e.g. death while in hospital). Using a large number of training 
cases, it is possible to estimate the parameters of a logistic regression model with 
a certain level of confidence and estimate the future performance of the model in 
previously unseen cases. The level of confidence will depend on the number and 
quality of cases (e.g. presence of outliers and noise), as well as how well the model 
fits the training data.
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The logistic function links i predictors, or independent variables, each denoted 
by xi and collectively represented by the vector x, to the dependent variable being 
predicted, represented by Y using the logistic function as in the equation below:

Y
e c

=
+ − +

1

1 ( )βx

This function tries to model a step function with two possible values for Y, and 
it is therefore used to classify binary outcomes. The resulting function is a con-
tinuous value from 0 to 1 along a sigmoid curve. Figure 11.1 illustrates a logistic 
regression model (a sigmoidal function), and this function is also one of the pos-
sible functions used within the nodes of artificial neural networks, which we will 
describe in Section 11.4. In most models, Y is a binary variable representing patient 
status as having a certain disease or condition (Y = 1) or not (Y = 0), or prognostic 
class, and the vector x represents the clinical, laboratory, and demographic predic-
tors (e.g. x1 may represent age, x2 may represent TSH, and so on). The vector β rep-
resents the coefficients that are estimated for each predictor and c is a constant. The 
parameters of the logistic function are usually obtained by maximum likelihood 
estimation using iterative algorithms (Hosmer and Lemeshow, 1989). The coeffi-
cients correspond directly to the log of the odds ratio associated with each variable. 
The parameter c calibrates the model for the baseline rate of the outcome of inter-
est. These features make the model somewhat easy to interpret, since the sign and 
magnitude of the coefficients (when standardized) can provide a direct indication of 
how much each particular predictor is associated with an increased risk of a certain 
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FIGURE 11.1

(a) Example of a simple bivariate logistic regression model (no intercept is included for 
simplicity). (b) Example of an artificial neural network constructed for the same purpose.
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outcome (e.g. large positive coefficients will usually increase the probability of Y = 1 
for variables such as those representing most laboratory assays).

For certain data, predictors may need to be combined in interaction terms or 
transformed so that a good fit to the data can be obtained. Consider the example 
in Figure 11.2: a laboratory test value that is considered normal within a certain 
range (e.g. TSH within 0.4–6 μU/mL), and abnormal otherwise. Even in this simple 
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FIGURE 11.2

A step function (bold) indicating “normal” laboratory values within a certain range. The 
step function is overlaid with logistic functions for illustration purposes. Without variable 
transformation, the logistic regression function will always miss one of the extremes 
of values, misclassifying values within that range as not “normal.” A simple quadratic 
transformation can make logistic regression work for this example.
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univariate problem of classifying the values into normal and abnormal, a logistic 
regression model in which variables are not transformed will not be able to cor-
rectly classify all cases, even in the absence of noise. The reason is simple: the 
logistic regression function is monotonic and would necessarily classify a portion 
of the abnormal cases (either the low or high values) as being normal. However, 
a simple transformation of the variable, in this case, a quadratic, might allow the 
logistic regression model to correctly classify all cases.

Figure 11.3 illustrates a bivariate problem in which values for two laboratory 
tests have to be within a certain range for the patient to be considered healthy. In 
this example, both free T4 and TSH need to be within normal limits for the classi-
fication “euthyroid” to be made. It is easy to see that no single line would separate 
the shaded area from the rest, which means that no linear model can produce cor-
rect classifications for all cases. Variable transformations or interaction terms are 
necessary.

Problems that are not solvable by linear or semilinear models such as logistic 
regression without variable transformations or addition of interaction terms are 
known as nonlinearly separable problems. Although logistic regression models can 
be used in linearly nonseparable problems, predetermining which transformations 
or interactions are necessary is a laborious ad hoc process that is computationally 
intractable unless the number of variables is very small. Furthermore, the interpre-
tation of a model that uses transformed variables or interaction terms is difficult. 
Therefore, most models that are used in practice do not make use of interaction or 
transformed terms.

Techniques that originated in the computer science community have addressed 
nonlinearly separable problems in different ways. We review next some of these 
techniques.

TSH

T4

FIGURE 11.3

Simplified bivariate example. For a case to be considered “euthyroid” (shaded area), 
values for both tests have to be within a certain range. Without variable transformation, 
logistic regression will not work for all cases because the problem is not linearly separable.
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11.4  Overview of some machine learning models
Artificial intelligence techniques such as those commonly referred to as machine 
learning techniques have been explored to address some potential limitations of 
standard modeling techniques. Among these techniques, classification trees and 
artificial neural networks have been the most popular in the medical domain.

11.4.1  Classification trees
Classification trees recursively and univariately partition cases into two subgroups 
(Breiman et al., 1984). At each branch in an upside-down tree, as illustrated in Figure 
11.4, the attribute-value pair that best partitions the cases into the categories of inter-
est (e.g. “euthyroid” or not) is chosen. A simple step function assigns “yes” or “no” 
to the criterion in question (e.g. TSH > 6 = yes). This is repeated until the partitions 
that represent the “leaves” of the tree have only cases from a single category. Figure 
11.4 illustrates the simplified bivariate example from Figure 11.3. The first attribute-
value pair to be chosen is (TSH, 6 μU/mL). Cases in the right branch/leaf (TSH > 6) 
are not euthyroid. Cases in the left branch (TSH ≤ 6) may be euthyroid or not. The 
next attribute is T4 at 12.5. Cases in the right branch/leaf (T4 > 12.5) are not euthy-
roid. Cases in the left branch may be euthyroid. The pair (TSH, 0.4 μU/mL) is then 
chosen, and cases are classified into “Not euthyroid” if TSH ≤ 0.4. Otherwise, (T4, 
6.5 is chosen) and those cases with T4 > 6.5 are classified as “euthyroid.”

no
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T4> 6.5

TSH > 6

T4

no
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yes

yes

yes

yes

Not euthyroid
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Not euthyroid euthyroid
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FIGURE 11.4

Classification tree for the bivariate outcome problem illustrated in Figure 11.3. Cases are 
recursively partitioned according to the attribute-value pair that best divides the cases into 
“euthyroid” or not. The resulting partitions can be easily visualized in this simplified two-
dimensional problem.
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Note that classification trees can solve nonlinearly separable problems, since the 
number of branches is not limited. However, given their limitation of using only 
univariate cuts at each branching point, there may be too many branches for the 
tree to be easy to interpret. Pruning algorithms have been developed to address this 
issue (Gelfand et  al., 1991). The Goldman tree (shown in Figure 11.5) for decid-
ing whether a patient with chest pain should be admitted to the emergency depart-
ment is the prime example of an application of a classification tree (Goldman 
et al., 1982). This study identified nine important clinical factors that enabled the 
system to correctly categorize all (60) patients with myocardial infarction (MI) in 
the sample (482). Sensitivity was an absolute priority in this model, and a portion 
(71) of patients without MI were categorized as false positives. The clinical factors 
were: age, duration of pain, chest pain ± radiation, presence of diaphoresis, history 
of angina (and severity of pain) or prior MI, local pressure causes reproduction of 
pain, EKG ST-segment changes, Q waves, or T-wave changes not known to be old.
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FIGURE 11.5

Computer-derived decision tree for the classification of patients with acute chest pain. 
Reproduced (with permission) from Goldman and colleagues.(Goldman et al., 1982) “Each 
of the 14 letters (A through N) identifies a terminal branch of the tree.” In the Goldman 
study, seven terminal branches (C, D, H, I, K, M, and N) contained all the patients with 
acute myocardial infarction, along with a portion of the patients with other diagnoses.
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11.4.2  Artificial neural networks
The use of artificial neural networks (ANNs) has been reported in several medi-
cal domains, particularly in critical care (Frize et al., 2001; Dybowski et al., 1996; 
Tu and Guerriere, 1993; Kayaalp et al., 2000; Fraser and Turney, 1990) ANNs are 
highly flexible models composed of several processing units. Each of these units 
processes incoming information and may propagate information forward if war-
ranted by their activation function. The most common activation function is the 
logistic, which has been presented in Section 11.3. The logistic function tries to 
model a step function that has been widely used to represent the electrical conduc-
tion in real neurons, which only propagate electric impulses if a certain thresh-
old value is achieved. Although it is possible to build ANNs without utilizing an 
intermediate “hidden” layer of neurons, their flexibility comes from the inclusion 
of more than one nonlinear “hidden” node in this layer. In fact, the limitation of 
perceptrons, which were precursors to ANNs and were subject of much interest in 
the mid 1950s, was noted by several authors (Minsky and Papert, 1969). The same 
authors noted that multilayered perceptrons did not suffer from this limitation, but 
at that time there were no algorithms for estimating weights of multilayered per-
ceptrons. The field was stagnant until Rumelhart et al. (1986) published the back-
propagation algorithm in the mid 1980s. In the following two decades, a plethora of 
successful applications were reported in and out of the medical literature, but many 
of these research models did not translate into real clinical applications. Some, 
however, have been evaluated in real applications, such as the automated analysis 
of Pap smears (Baxt, 1991; O’Leary et al., 1998). There is no theoretical advantage 
of using ANNs over logistic regression in binary classification problems unless the 
ANNs have a hidden layer of nonlinear neurons. Hence, we will limit our discus-
sion to this type of ANNs.

Figure 11.1 illustrated the similarities and differences between binary logistic 
regression and commonly used ANNs with a single output unit. ANNs and logistic 
regression models have several differences: (1) the activation function of the out-
put unit needs not be the logistic in ANNs; (2) ANNs have intermediate processing 
units, often called hidden units or hidden nodes; and (3) ANNs can have multiple 
output units, so different classification problems can be modeled with a single net-
work (although one could argue that polytomous logistic regression also allows for 
multiple outcomes to be modeled).

The hidden units in ANNs operate between the inputs and the outputs to pro-
cess information to be sent to the output unit; Figure 11.6 illustrates how an ANN 
might solve the linearly nonseparable problem of classifying cases into “euthyroid” 
or not based on values of two laboratory tests, as illustrated in Figure 11.3. In this 
example, the activation functions of the intermediate layer of neurons correspond to 
the branching points that define the partitions of the classification tree presented in 
Section 11.4.1, but this will often not be the case. Furthermore, in the example we 
used step functions in the hidden layer. Step functions are not linear, and their com-
bination offers a potential advantage over logistic regression, which does not have 
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a hidden layer.1 We use them here for illustration purposes, although we remind the 
readers that the most commonly used function in ANNs is the sigmoid function.

The outputs of these hidden layer functions are multiplied by the weights that 
lead into the output node, and summed to serve as input to the output node, which 
classifies cases into “euthyroid” or not. We do not represent every possible weight 
between the input layer and the hidden layer, so as to allow better visualization in 
the picture, but the reader can, for purposes of simplicity, assume here that the non-
displayed connections are associated with null weights.

FIGURE 11.6

Artificial neural network with a hidden layer of nodes. For didactic purposes, activation 
functions in this example correspond to step functions that define partitions similar to the 
ones in the classification tree. Corresponding sigmoid (logistic) functions would be used in 
practice. As opposed to the classification tree example, the partitions here are overlapping. 
The outputs of the step functions are multiplied by their respective weights and combined 
as inputs to the output unit. The output unit has a step function that determines whether a 
case is “euthyroid” or not.

1 If linear functions are used in the hidden layer, there is no advantage of ANN over logistic regression.
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11.5  Prediction models in medicine
Many of the published medical classification and prediction models are research 
tools with limited utilization in clinical care. Even though early CDS systems 
addressed mostly diagnostic, test sequencing, and treatment choice aspects of clini-
cal care, many of the most popular statistical and machine learning classification 
models in medicine used today address prognostic aspects of care.

In this section, we will discuss some applications of the modeling techniques 
described above, although each clinical example will not include all methods. In 
almost all cases, logistic regression modeling techniques are the most commonly 
reported and used in clinical practice for a variety of prognostication and classi-
fication purposes. The other techniques presented were generally compared to the 
standard of logistic regression, and rarely outperformed it. The lack of widespread 
use of a number of these models can be attributed to the lack of general knowledge 
of the methods and the greater complexity of the techniques. In many cases, the 
amount of data available does not allow the construction of complex models with 
many parameters, since there is a tendency of these models to overfit the data and 
not generalize well to new cases. As data becomes more abundant, this limitation is 
likely to play a smaller role.

The most common indices of model performance are discrimination and cali-
bration. Discrimination assesses how well the models can potentially discriminate 
positive and negative cases in general. Models that estimate higher probabilities 
of outcome “1” for cases that had that outcome have high discrimination, which 
is usually measured as the area under the ROC curve (Hanley and McNeil, 1982). 
Calibration assesses how close the model’s estimated probability is to the “true” 
underlying probability of the outcome of interest. Calibration in logistic regres-
sion models is usually assessed by a plot of the average estimate within a group to 
the expected ratio of the outcomes in that group. Typically, deciles are constructed 
based on the model’s sorted estimates. The Hosmer-Lemeshow goodness-of-fit 
(HL-GOF) test is still the most widely used statistical test to assess calibration, 
although there are concerns that it can be biased when, for example, there are sev-
eral ties among the estimates (Lemeshow and Hosmer, 1982).

Even models with high areas under the ROC curve can estimate probabilities 
that are very far from reality, or “uncalibrated.” For example, the AUC remains 
unchanged with any monotonic transformation of the estimates (e.g. dividing all 
estimates by 10, which would decrease an estimate of 80% to 8%, and an estimate 
of 15% to 1.5%, but preserve the order of estimates, would result in no change in 
the AUC). A good example of this can be seen in the application of the MPM-II 
ICU mortality risk model on the California Intensive Care Outcomes Project 
(CALICO), where the AUC of the model on statewide data was 0.803 (0.790–
0.815), but calibration was poor by both Observed/Expected Ratio, shown in 
Figure 11.7, as well as HL-GOF testing (CALICO. Final Report, 2007).
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11.5.1  Prognosis of ICU mortality
The Acute Physiology and Chronic Health Evaluation series of models 
(APACHE-II (Knaus et  al., 1991) and APACHE-IV (Zimmerman et  al., 2006)) 
constitute some of the most widely used logistic regression-based predictive mod-
els. These tools are used in intensive care units (ICUs) to predict in-hospital mor-
tality based on a variety of physiologically-based variables. The initial version of 
APACHE (Knaus et al., 1981) was notable as the first clinical predictive model to 
exclusively use objective physiological parameters to predict outcome, and was an 
expert-based scoring system using these parameters to estimate the risk of outcome.

Both APACHE-II and APACHE-IV remain in use today for research, quality 
control, and clinical applications. APACHE-II was published in 1985 using a much 
larger development data set (5,815 admissions from 13 hospitals) than APACHE, 
and improved upon the expert-based scoring system with the inclusion of a logis-
tic regression model using a patient’s expert-based physiology score, emergency 
status, and adjustments for certain diagnostic categories. The model showed 
good discrimination on different independent evaluation sets (Jacobs et  al., 1987; 
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Observed/Expected (O/E) Ratio plot using the HL-GOF h test decile categories to show 
the divergence from the ideal (where the expected proportion of outcomes equals the 
observed proportion of events for each decile), particularly for higher risk patients.
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Giangiuliani et  al., 1989; Chisakuta and Alexander, 1990; Turner et  al., 1991; 
Teskey et al., 1991; Wong et al., 1995), but its calibration was found to be highly 
variable. Since the model was made publicly available, it was used in many differ-
ent validation studies.

APACHE-III was published in 1991, having been developed in response to criti-
cisms regarding the case-mix and generalizability of APACHE-II. The system was 
developed from a database of 17,440 patients across 40 ICUs in the United States. 
APACHE-III was a commercial product, and was not made as easily available to 
the medical community at large as APACHE-II, but external evaluations conducted 
were similar to APACHE-II, indicating good discrimination and highly variable cal-
ibration (Zimmerman et al., 1998; Pappachan et al., 1999; Carneiro et al., 1997; von 
Bierbrauer et al., 1998; Bastos et al., 1996; Ihnsook et al., 2003; Rivera-Fernandez 
et  al., 1998; Cook, 2000). APACHE-IV was introduced in 2006 as a large scale 
remodeling of APACHE-III and is also a commercial product. This remodeling 
effort included remodeling 42 of the 72 underlying APACHE III equations and the 
removal of 11 equations that were no longer appropriate, or no longer reflected in 
clinical practice (Zimmerman et al., 2006).

These models remain useful in research, but limitations in calibration and 
across disparate patient populations have restricted their use in some clinical situ-
ations (particularly with respect to application to individual patients). Other prog-
nostic systems for the adult ICU, more common in Europe, are the Simplified 
Acute Physiologic Score SAPS-3, and the Mortality Prediction Model MPM-
III. The Sequential Organ Failure Assessment SOFA model has also been used to 
assess organ function over time. These models or their earlier versions have been 
extensively compared all over the world in disparate patient populations. Several 
reviews and comparisons among these models have been published to date (Vincent 
et al., 1996; Ohno-Machado et al., 2006; Castella et al., 1991; Rowan et al., 1994; 
Wilairatana et al., 1995; Del Bufalo et al., 1995; Castella et al., 1995; Moreno et al., 
1998; Nouira et  al., 1998; Tan, 1998; Patel and Grant, 1999; Vassar et  al., 1999; 
Katsaragakis et al., 2000; Livingston et al., 2000; Capuzzo et al., 2000; Markgraf 
et al., 2000; Beck et al., 2003; Keegan et al., 2012; Vasilevskis et al., 2009; Hwang 
et al., 2012; Costa e Silva et al., 2011; Shrope-Mok et al., 2010).

Multiple studies have compared logistic regression to artificial neural networks 
in this domain. Clermont and colleagues (Clermont et al., 2001) found that with a 
development data set of sufficient size (1,200), locally developed logistic regres-
sion and artificial neural networks performed equivalently in terms of both calibra-
tion (adequate) and discrimination (AUCs ranging from 0.80 to 0.84). However, 
both models experienced performance degradations as the development sample 
size decreased. Another smaller study with a development set of 168 undertaken by 
Dybowski and colleagues (Dybowski et al., 1996) showed superior discrimination 
of the ANN compared to LR (0.863 vs. 0.753 AUC, respectively).

Some studies have compared the APACHE-II LR model to ANNs. Nimgaonkar 
and colleagues (Nimgaonkar et al., 2004) found, after developing an ANN on 1,962 
patients in an Indian ICU with the 22 APACHE-II variables, that the ANN had 
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superior discrimination to APACHE-II (0.87 vs. 0.77 AUC, respectively). Wong and 
colleagues (Wong and Young, 1999) performed a similar comparison with a devel-
opment data set of 2,932 patients in the UK, and found that the two methods had 
equivalent discrimination (0.82 vs. 0.83 AUC for ANN and APACHE, respectively).

Comparisons of calibration were also done in some of the studies, but they 
were problematic because the LR model was developed on external patient popula-
tions disparate from the locally-derived UK and Indian populations utilized for the  
ANN models. Comparisons of discrimination do not suffer from this problem in the 
same way.

11.5.2  Cardiovascular disease risk
Another category of extremely well-known prediction tools in medicine provides 
estimates to patients of the risk of developing future heart disease. Although over 
100 risk prediction models have been developed for this purpose, US medical 
practice has almost exclusively used the family of 10 year heart disease risk mod-
els developed from patients in one of the most famous patient cohorts who have 
been followed in the community of Framingham, Massachusetts, since the early 
1950s. From oldest to most recent, these include models developed from the ini-
tial examination of the Framingham Offspring Study (FOS) (Kannel et al., 1979), 
the 11th examination of the original Framingham cohort (FC) (Anderson et  al., 
1991), or 1st examination of the FOS and 11th examination of the FC (Wilson 
et  al., 1998), or the 1st or 3rd examination of the FOS and the 11th examination 
of the FC (D’Agostino et  al., 2008). Worldwide, other well-known models have 
been developed from the PROCAM (Assmann et  al., 2002) (Germany), UKPDS 
(Stevens et al., 2001) (United Kingdom), and QRESEARCH (Simmons et al., 2008; 
Hippisley-Cox et al., 2007) (United Kingdom) cohorts. All of the well-known mod-
els developed in this domain are based on (Cox and Oakes, 1984) proportional haz-
ards and logistic regression methods.

The widespread use of these models is related to a number of key factors that 
influence the utility and generalizability of the prediction model. First, the modeled 
outcome is of paramount importance, since heart disease is the number one cause 
of mortality in the US, accounting for 23.8% of all deaths (Hoyert and Xu, 2012). 
Effective treatments exist for many of the outcome predictors, such as hyperten-
sion, hyperlipidemia, and smoking. Second, the patient population that was used 
in model development is in many ways representative of the American population. 
The Framingham cohort was an excellent source of data because the longitudinal 
nature of the cohort allowed reliable discrimination of patients at higher risk but 
who had not yet presented any sign or symptom of heart disease. One of the pri-
mary limitations of the cohort was the lack of racial diversity.

External validation of these models has shown good discrimination and mod-
erate calibration, with some limitations when applied to populations with sig-
nificantly different demographics and specific comorbidities (such as diabetes) 
(Guzder et al., 2005; Stephens et al., 2004; Lenz and Muhlhauser, 2004; Song and 
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Brown, 2004). Recalibration strategies have been used to remediate this problem 
(Ridker et al., 2007; Paynter et al., 2009). Perhaps more concerning in this domain 
is the tendency to externally validate the models with different outcome definitions, 
most commonly seen between more stringent primary modeling outcomes and 
more relaxed external validation outcomes (Ridker et al., 2007; Berry et al., 2007; 
Denes et  al., 2007). For example, in some cases the models were developed on 
Hard CHD, which included sudden CHD death or myocardial infarction only, but 
then externally validated on Total CHD, which included Hard CHD outcomes as 
well as unstable angina and angina pectoris. In almost all cases, experts recommend 
remodeling rather than recalibration when outcome definitions need to be changed, 
even when the changes are minor.

These models have also clearly delineated the relative magnitude of various risk 
factors associated with heart disease, and have been used by a number of medi-
cal associates to establish guidelines of care (Grundy et al., 1998). In addition, the 
models are distributed as simple equations that can be quickly scanned by clinicians 
and patients, or embedded in calculators or computer-based software (Hingorani 
and Vallance, 1999).

11.5.3  Prognosis in interventional cardiology
Another widely studied area of risk prediction and stratification has been for the out-
comes of death (Peterson et al., 2010) and significant morbidity (such as bleeding 
(Mehta et al., 2009), acute kidney injury (Brown et al., 2008), or unplanned 30 day 
readmission) in interventional cardiology. Risk modeling in this domain has been 
particularly popular for a number of reasons. First, most of the treatments (balloon 
angioplasty, coronary artery stenting, or atherectomy) are therapies directed at pre-
venting myocardial infarction in patients who have developed significant heart dis-
ease. All of the remarks on the importance of this disease process in the prior section 
apply; these therapies can become necessary when prevention strategies fail.

Perhaps even more importantly, since interventional treatment is relatively 
intensive and done within a medical center, detailed data collection has been able 
to provide high-quality source data. The data quality has been also facilitated by 
the establishment of a national standard for the collection and storage of interven-
tional cardiology data (Cannon et al., 2001), which has since undergone additional 
iterations in response to more detailed device identification needs and changing 
clinical practice. In addition, a number of the adverse outcomes associated with 
the treatment (or lack of treatment) are realized quickly. This is important because, 
in general, a model’s performance is inversely related to the distance in time of 
the prediction from the occurrence of the outcome of interest. These factors have 
allowed the resulting models for this domain to attain high levels of discrimination.

Development of logistic regression prediction models for postprocedural 
mortality following angioplasty has followed a path similar to modeling in other 
medical domains. In general, the development populations were initially small 
and originated from a single center, which resulted in low generalizability 
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(Hannan et al., 1992; Resnic et al., 2001). These were followed by regional, multi-
institutional models (Ellis et al., 1997; O’Connor et al., 1999; Hannan et al., 1997; 
Moscucci et al., 2001). Finally, the American College of Cardiology (ACC) aggre-
gated data from centers across the United States to generate a mortality risk predic-
tion model (Shaw et al., 2002).

These models have been externally validated on a number of independent data 
sets. In general, discrimination has remained excellent across disparate patient 
populations and over more than a decade of changing clinical care. However, as 
noted in many modeling domains, calibration is a problem and seems to be directly 
related to both the size of the development data, and how far in the past they were 
collected (Holmes et  al., 2003; Holmes et  al., 2000; Moscucci et  al., 1999; Rihal 
et al., 2000; Singh et al., 2003; Matheny et al., 2005). For example, large changes 
in procedural care or the types of devices implanted, such as the introduction of 
heart valve replacement through cardiac catheterization (Tang et al., 2012; Durand 
et al., 2013), are likely to disrupt risk modeling performance and require develop-
ment of updated models through remodeling or recalibration techniques. As aware-
ness of the need for periodic updating of risk models has become more established, 
the ACC has pursued a remodeling strategy by conducting periodic updates to the 
risk models over the last decade, which has shown that some variables increase in 
significance while others fade to insignificance when predicting mortality (Peterson 
et al., 2010; Shaw et al., 2003).

11.5.4  Pneumonia severity-of-illness index
Finally, another logistic regression risk model example that has had a significant 
impact in the emergency department for both work flow (documentation require-
ments) and treatment is the Pneumonia Severity Index (PSI) developed from the 
Pneumonia Patient Outcomes Research Team (PORT) (Fine et al., 1997).

The team developed a prediction rule for the risk of death within 30 days for 
adult patients with community-acquired pneumonia. This disease is diagnosed in 
approximately four million adults each year in the US, and over 600,000 of the 
diagnosed patients are hospitalized (Garibaldi, 1985). The aggregate cost of hos-
pitalization for this disease was estimated at four billion dollars per year (Dans 
et al. 1984; La Force 1985). The results of the PORT study suggested that, if the 
risk model had been used to treat patients based on the risk categories suggested, 
26–31% of patients who had been hospitalized for care could have been treated 
safely as outpatients, and an additional 13–19% could have been hospitalized only 
for brief observation (Fine et al., 1997).

The key factors that led to the widespread use of this risk prediction tool were 
a combination of coinciding interest in evidence-based medical practice and in cost 
containment, as well as the high quality of the risk prediction tool. The model was 
validated on over 50,000 patients in 275 US and Canadian hospitals in the PORT 
study. Prior pneumonia risk prediction tools had suffered from small development 
population sizes (Daley et al., 1988; Keeler et al., 1990; Kurashi et al., 1992; Fine 
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et al., 1995) and limited external validation (Kurashi et al., 1992; Fine et al., 1995; 
Marrie et al., 1989).

The model has been widely used, and incorporated in both paper (Dean et al., 
2000) and electronic (Aronsky et al., 2001) decision support tools for use in deter-
mining hospital admission from an emergency department. A number of subse-
quent multicenter randomized prospective studies have supported the use of the 
PSI as an appropriate admission tool (Marrie et al., 2000; Atlas et al., 1998). It was 
incorporated into the American Thoracic Society’s (ATS) Community-Acquired 
Pneumonia guidelines (Niederman et  al., 2001), although the society empha-
sized the limitations of the model in populations that were not well represented 
in the development data set (such as outpatient clinic patients), echoing findings 
from a few studies (Marras et al., 2000). PSI was incorporated into the Infectious 
Diseases Society of America/ATS consensus guidelines (Mandell et  al., 2007) in 
2007. Subsequent meta-analyses showed that the PSI has similar performance to 
CURB65 and CRB65, which are alternative tools (Chalmers et  al., 2010; Loke 
et al., 2010; Chalmers et al., 2011). In addition to these tools, there are a number 
of factors that physicians must take into account. such as the presence of coexisting 
conditions, patients’ preferences, and inadequate home support (Halm et al., 2000). 
Cooper and colleagues (Cooper et al., 2005) reported that several types of classifi-
ers can achieve similar performance in this domain.

11.6  Conclusions
The utilization of statistical and machine learning techniques to discover knowl-
edge from existing clinical data has become an integral component of biomedi-
cal informatics. The techniques for constructing and evaluating classification and 
prediction models are constantly evolving, and there are few theoretical justifica-
tions for preferring one learning technique over another. Some models, notably 
those constructed using logistic regression techniques, have been popularized in the 
medical domain, especially for research. These models span a limited number of 
specialties, and are for the most part concerned with prognostication. To our knowl-
edge, there have been no formal large-scale studies documenting the utilization of 
these models by nonacademic clinicians at large. Even though some models are 
widely available on the web, there is currently no information on how many times 
they have actually been used in the provision of care. Several questions still remain:

●	 What types of data repositories can reasonably be used for medical pattern 
discoveries? Can data collected during clinical care be used to build decision 
support models? If so, what types of learning methods are adequate for sparse 
and noisy data?

●	 When can models originated from data of a single population be generalized to 
other populations? How can researchers assess the generalizability of such models?

●	 How can knowledge acquired from experts be integrated with knowledge 
discovered from real data?
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None of these questions has been fully answered by the medical informatics 
community, but research in this area is encouraging. The popularity of some data-
derived classification and prediction models, and their endorsement by health care 
institutions (an online model for assessing the risk of breast cancer is available at 
the NCI web site, for example), indicate that there is increasing interest in their use 
as diagnostic or prognostic tools. The availability of such models on the web also 
contributes to their utilization by the public at large.

It is important that clinicians utilize classification and prediction models. 
However, the integration of any computer system in the process of care is challeng-
ing. The electronic medical record is still not a reality in some settings in which 
medicine is practiced. The effective utilization of CDS systems depends on their 
seamless integration in a computer environment that is effectively used by practic-
ing clinicians; hence it is premature to expect that predictive models will be largely 
utilized until this barrier is completely removed. The absence of a suitable com-
puter environment is the first obstacle, but other issues also need further consid-
eration. In order to provide counseling at the individual level, predictive models 
have to improve to the point that the uncertainty and imprecision of the estimates 
are acceptable from a clinical perspective. The poor calibration of estimates can be 
caused by limited representation, at the model construction phase, of the subpopu-
lation to which models will be applied. Yet, collecting proper data from the institu-
tions in which models are expected to be applied is not a trivial task. Until these 
types of deficiencies are properly acknowledged and fixed, and studies show that 
the predictive models perform at least at the same level as humans, the utilization 
of predictive models for individual care may remain limited. However, given the 
rapid pace of technological advances in biomedicine and the increasing utilization 
of computers by health care providers, it is expected that better models will con-
tinue to be developed which may soon be incorporated as additional tools in the 
provision of individualized care.
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