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10.1 Introduction

In the chapters of this section, we discuss the various ways that knowledge is
derived to serve as a basis for clinical decision support. In this first chapter, we
focus on human expertise as a source of knowledge. In subsequent chapters, we
explore data-intensive methodologies, and techniques for synthesizing the col-
lected knowledge of the medical literature. We then further explore how advances
in genomics can offer new types of knowledge for clinical decision making and, in
turn, how large databases and the data-intensive methodologies can be applied to
personal decision making.

When we consider what makes human beings excellent at clinical decision
making, we generally acknowledge that there are two key determinants: how
much the experts know, and how well they apply what they know when devising
solutions to problems that may arise. Thus, as we consider the creation of opti-
mal decision support systems, we must similarly consider both the knowledge that
they embody and the processes they adopt when applying that knowledge. A sys-
tem can be “dumb” if the knowledge it needs is lacking or faulty, and it can dem-
onstrate “poor judgment” if it reaches inappropriate conclusions despite a wealth
of necessary factual knowledge. We recognize that it means little if we cram huge
amounts of knowledge into a system but the program subsequently cannot use it
wisely or appropriately.

In this chapter we focus on the acquisition of knowledge so that it can be
encoded for use in decision support systems. Our emphasis is on what we can
learn through interaction with human beings who are excellent at the same task for
which the system is intended. As we have suggested, that means that we need to
understand both the factual knowledge that is required to solve the relevant prob-
lems and the judgmental knowledge that characterizes a decision maker who gets
to the heart of a problem effectively, discards irrelevant information, and demon-
strates an ability to be creative rather than to solve problems by rote formula every
time they arise.

As noted previously, Chapters 11 and 12 discuss analytical methods for identify-
ing new or relevant knowledge from databases or the literature, such as data mining
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techniques and meta-analysis. Here, rather, we focus on the elicitation of knowl-
edge by interacting with expert human beings — analyzing their behaviors, inferring
their beliefs and knowledge, asking them to explain their thought processes and
actions, shadowing them while they perform expert tasks, and applying formal or
informal methods for extracting from those behaviors and explanations the factual
and judgmental knowledge that they appear to be applying. Such interactions can be
undertaken by human beings interacting with experts (often called knowledge elici-
tation by cognitive scientists, or knowledge engineering by computer scientists) or
by computer programs that experts can use to convey what they know for capture
in a computer-based representation (often called interactive transfer of expertise).
This chapter focuses on the former processes, with brief discussion of the history
of computer-based transfer of expertise from human being to computer in Section
10.4. Other chapters (Chapters 11-14) discuss current approaches to the inference
of new knowledge by analyzing large data sets (data mining).

There are a number of reasons why we want to capture expert knowledge
(Crandall et al., 2006). These include:

e Knowledge preservation. We want to capture “wisdom,” which develops with
expertise. Such knowledge is typically experiential, too often undocumented,
and we lose it once the expert retires or otherwise leaves the job.

e Knowledge sharing. Captured expert knowledge, meaningfully represented,
can be reused in training programs, where trainees can be taught to develop
expert strategies and functional efficiency. Such knowledge also can be
shared among those who need to use it for a wide variety of decision-making
tasks.

e Knowledge to form the basis for decision aids. New technology can be
created, based on the expert knowledge, to help practitioners make better
decisions. The technology, properly implemented, must embody the concepts,
principles, and procedures of the work domain.

e Knowledge that reveals underlying skills. As the use of expert knowledge is
explicated, it also reveals underlying strategies and skills, and how heuristics
and intuition are applied in practice.

e Understandability of human-derived knowledge. As opposed to the “logic”
underlying data-intensive or probabilistic techniques, the rationale for a judg-
ment by a human expert can be explained in a form that makes sense and can
thus be more readily accepted by a user.

Although the computer-based representation of knowledge is covered in
Section IV of this volume, it is difficult to discuss the acquisition of knowledge
without considering the representational issues that motivate and guide the acqui-
sition process. Furthermore, the entire effort to capture and utilize knowledge in
computer programs is predicated on the recognition that knowledge has a central
role to play in providing tailored guidance through decision support systems. For
example, cognitive psychologists have recognized the centrality of domain-specific
knowledge in the skilled solving of complex problems (Patel and Groen, 1991a;
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Patel and Groen, 1991b). Researchers in artificial intelligence have been noting
for decades that “knowledge is power” and that general representations and search
strategies, once a primary focus in that field, are limited in their ability to create
intelligent behavior in machines (Feigenbaum et al., 1971). Knowledge-dependent
computer applications, such as expert systems that use expert knowledge to perform
complex problem solving and decision-making tasks (Duda and Shortliffe, 1983),
are intended for use when the real experts are scarce, expensive, inconsistent, or
simply unavailable on a routine basis. This characterization begs the questions
“What is an expert?” and “How do we distinguish the knowledge and abilities of
experts from those who are novices, or less expert, in a field?” Although we can
easily agree that experts are those who have special skills or knowledge derived
from extensive experience in their domain of expertise, their ability to achieve
accurate and reliable performance also shows flexibility and adaptiveness in their
environment that is difficult to explain by factual knowledge alone. We recognize
that experts know “how” and “when”, not just “what,” and any attempt to capture
knowledge for computer representation and use must recognize that these two gen-
eral classes of knowledge are equally important.

Knowledge acquisition is a very general term that may be defined as the pro-
cess of identifying and eliciting knowledge from existing sources — from domain
experts, from documents, or inferred from large datasets — and subsequently
encoding that knowledge so that it can be verified, validated, and utilized. This
volume discusses the design and implementation of such knowledge-based sys-
tems and the evaluation of their performance. However, reproducible methods to
acquire such knowledge, and to assure its accuracy, are typically discussed sepa-
rately, even though they are intimately related to the design and construction of
decision support programs. A knowledge base used in a clinical decision support
system might contain knowledge structures that represent potential findings and
diagnoses and the relationships among them (conceptual or factual knowledge), a
knowledge structure representing guidelines or algorithms used to operate on this
knowledge structure (procedural knowledge), and possibly also a knowledge struc-
ture with application logic used to apply these guidelines and algorithms to the
underlying conceptual structure (strategic knowledge). All these types of knowl-
edge must be combined to achieve a functioning decision support facility, and the
elicitation of knowledge needed for expert performance must address each type of
knowledge, not just “facts.”

The techniques and theories that enable knowledge elicitation can be viewed
within the context of the process illustrated in Figure 10.1. The process begins with
methods to “extract” knowledge from human experts (knowledge acquisition [KA]
or knowledge elicitation [KE]), followed by the representation of that knowledge
(KR) in a computationally tractable form that supports knowledge-based agents or
applications (Hoffman et al., 1995). Many people would then include the verifica-
tion and validation of the output of those knowledge-based agents or applications as
part of the complete process, since they provide feedback regarding the quality of
the contents of the underlying knowledge structures.
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FIGURE 10.1

The classical view of knowledge engineering, in which an individual who knows the
technical details of a system’s representational conventions also has the skills of interviewing
and observation necessary to work closely with an expert (or a group of experts) in order to
obtain the needed knowledge and to convert it to a computationally useful form.

There is a variant of Figure 10.1 in which the knowledge is acquired not from
a single expert collaborator but rather from a group of experts, perhaps through a
consensus development process or by studying several experts and merging what
one has learned into a single knowledge base. The field of cognitive science offers
several methods for understanding the reasoning processes, mental models, and
knowledge used by experts when they solve problems, as well as for dealing with
team decision making and consensus development. We shall present some of those
notions in the subsection that follows. There are also formal methods by which
experts work together, supported by the literature and formal research studies, to
reach consensus in formulating knowledge (e.g. the process of evidence-based
guideline development (Peleg et al., 2006)). The acquisition and representation of
consensus guidelines are further discussed in Chapter 16.

Finally, there has been substantial work to develop computer programs that
acquire knowledge directly from experts (see Figure 10.2). Termed knowledge
acquisition systems or knowledge authoring systems (see Section 10.4), these pro-
grams are intended to fill the role of knowledge engineer, providing human beings
with a computational environment for assessing what knowledge is missing from a
system and transferring their knowledge so that it can be encoded for that system’s
use. Such programs may be tightly coupled with the decision support system itself,
allowing the system’s decision-making abilities to be assessed and debugged as part
of the knowledge acquisition/enhancement process. They always rely on access to
the pre-existing knowledge in the system, as is indicated by the arrows going in
both directions between the computer and the knowledge base in the figure.
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FIGURE 10.2

The interactive transfer of expertise using a computer program for knowledge acquisition.
Note that such programs will generally both create new knowledge and use preexisting
knowledge to guide the knowledge acquisition process. See also Section 10.4.

10.2 Theoretical basis for knowledge acquisition

We now focus on the frequently cited theoretical basis that underlies the numerous
methods and techniques that exist to elicit domain knowledge from sources such
as relevant experts. The currently accepted psychological basis for KA depends on
defining and acknowledging the concept of expertise. Two major goals of exper-
tise research have been to understand what distinguishes outstanding individuals
in a domain from less outstanding individuals, and to characterize the development
of expertise. This approach originated with the pioneering research of deGroot
(deGroot, 1965) in the domain of chess, from which it extended to investigations
of expertise in a range of content domains, including physics (Chi et al., 1981;
Larkin et al., 1980), music (Sloboda, 1991), sports (Allard and Starkes, 1991),
and medicine (Patel and Groen, 1991b). This research has shown that, on average,
the achievement of expert levels of performance in any domain requires about ten
years of full-time experience. An “expert” is someone who has achieved a high
level of proficiency, as indicated by various measures, such as international “Elo”
ratings in chess (named for the system's creator, Arpad EI§, a Hungarian-born
American physics professor), world rankings in various athletic endeavors, and cer-
tification by a sanctioned licensing body, as in medical subspecialties.

10.2.1 The nature of expertise

In medicine, the expert—novice paradigm has contributed to our understanding of
the nature of medical expertise and skilled clinical performance. Expert physicians
have extensive general knowledge of medicine (acquired through medical school
and residency training) and deep, detailed knowledge of their relatively narrow
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areas of specialization (acquired from both training and clinical experience). Every
experienced physician has acquired common wisdom and medical knowledge as
well as certain mastery in the application of medical skills; this constitutes generic
expertise. Investigators have suggested the following classification of levels of
expertise (Patel and Groen, 1991b):

e A beginner is a person who has only routine, lay knowledge of a domain; an
example is a typical patient.

e A novice is someone who has begun to acquire the prerequisite knowledge
assumed in the domain, such as a medical student; novices have a basic
familiarity with the core concepts, the language, and to a lesser extent, the
culture of medicine.

e An intermediate is above the beginner level but below the subexpert level and is
typically a senior medical student or a junior resident.

e A subexpert (e.g. a specialist solving a clinical problem outside his or her
domain of expertise) possesses generic knowledge and experience that
exceeds that of an intermediate but lacks specialized knowledge of the medical
subdomain in question.

e An expert (e.g., a cardiologist or an experienced intensive care nurse) has spe-
cialized knowledge of the subdomain in addition to broad generic knowledge.

The development of expertise has been shown to follow a somewhat counter-
intuitive trajectory. It is often assumed that the novice becomes an expert by a
steady, gradual accumulation of knowledge and fine-tuning of skills. That is, as
a person becomes more familiar with a domain, his or her level of performance
(e.g. accuracy and quality) gradually increases. It turns out, however, that one
generally can document a degradation in performance as a subject moves from
novice to expert. This has been referred to as the intermediate effect (Patel and
Groen, 1991a). It has been repeatedly demonstrated that superior expert perfor-
mance is mediated by highly structured and richly interconnected domain-specific
knowledge. Experts’ knowledge is hierarchical and densely interconnected, which
allows new pieces of information to become well integrated. Given that a novice’s
knowledge base is sparse and an expert’s knowledge base is intricately intercon-
nected, an intermediate may have many of the pieces of knowledge in place but lack
the extensive connectedness of an expert, leading to the intermediate effect just men-
tioned. For example, expert cardiologists are routinely called upon to integrate clinical
findings at various levels of aggregation, from biochemical abnormalities evidenced in
blood tests to perturbations at the system level to clinical manifestations as expressed
in the patient’s complaints. After the performance degradation phase due to the inter-
mediate effect, practitioners develop the missing connections among concepts in their
knowledge base and, as they gain experience in the execution of a task, their perfor-
mance becomes increasingly smooth, efficient, and automatic.

A great deal of experts’ knowledge is finely tuned and highly automated,
enabling them to execute a set of procedures in an efficient, yet highly adap-
tive manner, which is sensitive to shifting contexts. They can readily filter out
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irrelevant information. Novices, as opposed to intermediates, do not conduct irrel-
evant searches, simply because they lack knowledge rich enough to generate such
searches. Studies demonstrate that expert performance is not a result of generally
superior memory skills, but it is a function of a well-organized knowledge base
adapted to recognizing familiar configurations of stimuli. The nature of experts’
organized knowledge can also account for their superior perceptions of patterns.
This is demonstrated compellingly in studies of expert radiologists, where they can
be shown to look at the x-ray image at a glance, to develop an immediate impres-
sion, and then to search the image for findings that fail to fit or that otherwise
modify the initial impression. For more details on the nature of expertise, refer to
several of the key papers in the field (Chi et al., 1988; Ericsson, 1996; Ericsson and
Smith, 1991; Feltovich et al., 1997).

One of the things that domain experts know about is the procedures they use
in their practice. They learn many ‘“heuristics” or rules of thumb (Chapman and
Elstein, 2000). These compiled, top-level procedures can lead experts to skip steps
when they describe the processes by which they carry out their task. Some such
heuristics are shared with other experts, but others are ones they have created on
their own (Patel et al., 1994). In addition, experts have meta-cognitive awareness
of their own strategies and how they manage their resources (Glaser, 1996). Meta-
cognition refers to the collection of cognitive process and functions that individuals
use when thinking about their own cognition (about the way that they think).

Thus, when such experts work with knowledge engineers or KA programs, their
goal is to transfer their existing knowledge to the computer so that it is able to rep-
licate human expert performance in the task for which they have specialized exper-
tise. Given the complexity of the types of knowledge and perceptual issues that
characterize human expertise, it is challenging to capture such knowledge and to
encode it for computer use so that expert performance by a decision support system
can be achieved.

10.2.2 Role of mental models

One of the significant challenges of knowledge representation, especially from a cog-
nitive perspective, is to devise mechanisms for capturing and representing the prod-
ucts of human clinical comprehension. For example, during a clinical diagnosis task,
clinicians perceive, focus on, comprehend and create solutions using available patient
information. The summary results of this process (e.g. a diagnosis or an assessment
and plan) are often documented for future users (e.g. another physician during a
later shift). However, the intermediate thought processes (i.e. how the diagnosis was
reached, or what relationships among the available data were considered) are quite
difficult to capture and use for the future. Such a representation would be useful, not
only for characterizing the nature of knowledge that is used for clinical diagnosis, but
also for developing intelligent applications that can support decision making. While
much has been written about rule-based, probabilistic and knowledge-based solu-
tions, there has been very little research on how to capture and distinguish among
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the corresponding mental models of clinicians, especially given the variability in cli-
nicians’ expertise in a given disease (e.g. the differing mental models of a disease
between a specialist in the relevant discipline and a less experienced individual such
as a house officer or even a primary-care physician; the patient’s mental model of his
or her own disease is of course even more rudimentary).

Such mental models are especially useful for documenting the basis for the
diagnosis and for sharing information regarding patients and their care transitions.
These models are designed to answer questions such as “how does this work?” or
“what will happen if I take the following action?” or “why is the patient’s blood
glucose level so high given the medications he is currently receiving?” Running a
model corresponds to a process of mental simulation for generating possible future
states of a system from an observed or hypothetical state. An individual's mental
models provide predictive and explanatory capabilities of the function of a given
system (Patel and Kaufman, 2006).

10.2.3 Team-based decisions and shared knowledge

The development of clinical guidelines and other decision support tools involves
multiple team players, such as attending physicians, consultants, clinical trainees,
computer scientists, and psychologists with a range of expertise, unique vocabu-
laries, and specific mental models. Shared mental models are an extension of the
mental model concept and reflect the shared and collective knowledge of a team.
They provide reciprocal expectations, which enable teams to coordinate and make
predictions about the behavior and needs of their colleagues (Cannon-Bowers et al.,
1993). Individual mental models can be studied through a wide range of experi-
mental tasks that involve prediction and explanation. Shared or team mental models
are best captured using naturalistic' or quasi-naturalistic methods that characterize
communication and collective expertise. The study of teams necessitates a conver-
gence of methods that focus on both individual and collective performance.

10.3 Cognitive task analysis

What, then, are the approaches that have allowed nonexperts to analyze, under-
stand, and encode the ways that individual experts make decisions? The general
approach that cognitive scientists use in analyzing the basis for human performance
is known as cognitive task analysis (CTA). Its purpose is to capture the way the
mind works — to capture cognition. CTA should describe the basis for skilled per-
formance that is being studied. The methods in this field are varied, and a detailed
exposition is beyond the scope of this book, but in using CTA, cognitive scientists
try to capture what people are thinking about, what they are paying attention to, the

!'Naturalistic methods are those that involve direct observation of individuals performing tasks in the
real world rather than in controlled experimental situations.
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strategies they are using in making decisions, what they are trying to accomplish,
what information they discard, and what they know about the way a process works
(Crandall et al., 2006). The three key aspects of CTA are 1) knowledge elicitation,
2) data analysis, and 3) “knowledge representation,” where in the generic case the
representation of knowledge conforms to formal criteria and methods that may not
be inherently computational, even though they might provide insight when one is
constructing a computer system’s knowledge base in the same domain. Cognitive
scientists will utilize one of a variety of knowledge representation schemes to
describe and capture what they have learned and to compare the expertise and rea-
soning processes of individuals (for example, novices versus experts when pre-
sented with identical problems). In the following sections, we briefly describe each
of these three key aspects of CTA.

10.3.1 Knowledge elicitation (KE) methods

Conducting KE studies is often complex and resource-intensive. As a result, it is
important to select the appropriate KE methods and tools at the outset of such pro-
jects in order to ensure that the end product is amenable to the planned application
domain. One of the key issues to consider when planning a KE study is the source
of the knowledge to be elicited. The use of domain experts is probably the most
common and simultaneously problematic source of knowledge (Scott et al., 1991).
The use of domain experts presupposes the selection of individuals with sufficient
domain knowledge, interest in participating in the KE process, and minimal bias — a
combination of attributes not always easily attained.

Further complicating the use of domain experts is the frequent need to collect
knowledge from multiple experts. Groups of experts are often needed to mitigate
the problems associated with using single experts, as described later in this chapter
(Liou, 1990), which may lead to knowledge elicitation with incomplete or poten-
tially ineffective contents. However, though the use of multiple experts has the
potential benefit of utilizing group synergies to generate consensus knowledge that
is greater than the sum of the knowledge contributed individually (Boy, 1997), it is
also not without its potential pitfalls, most notably the difficulties surrounding the
merging of multiple experts’ knowledge and the potential for the resulting knowl-
edge to represent a single expert’s opinion or input, rather than a true group con-
sensus (Liou, 1990). Despite these potential concerns, the benefits of using multiple
experts in the knowledge elicitation process generally outweigh the disadvantages.

Straightforward interview techniques are often used because they require a min-
imum level of resources, can be performed in a relatively short time frame, and can
yield a significant amount of qualitative knowledge. The disadvantages of interview
techniques include a frequent lack of quantitative data, which are needed for the
input into the next step in the process. Furthermore, the results can often be biased
due to the framing or presentation of questions or the selection of topics that are of
interest only to researchers (Boy, 1997; Hawkins, 1983). But, perhaps most impor-
tantly, interviews simply lead to introspective opinions of the collaborating experts,
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and the knowledge elicited may not correspond to what they actually do when solv-
ing problems in the domain. For this reason, most knowledge engineers and psy-
chologists who perform knowledge elicitation would prefer to observe the experts
as they carry out tasks, either in simulated or “real world” environments. In order
to gain insight into their mental processes, the experts may be asked to talk aloud
about what they are doing and thinking while they are performing the task. In the
world of cognitive science, such responses generated during problem solving are
known as think-aloud protocols (Ericsson and Simon, 1993).

In contrast, ethnographic evaluations of expert performance are naturalistic
observational studies conducted in context, with a minimum of knowledge engi-
neer or psychologist involvement in the workflow or situation under consideration
(“fly on the wall” observations). Such studies also implicitly evaluate the knowl-
edge used by those experts and have been have been used in a variety of domains,
ranging from air traffic control systems to complex healthcare delivery applications
(Adria et al., 2003; Cohen et al., 2006; John et al., 1995; Laxmisan et al., 2005).
One of the primary benefits of contemporary ethnographic research methods is
that they are specifically tailored to minimize potential observational or researcher-
induced biases (e.g. the Hawthorne effect’), while maximizing the role of collect-
ing information in context, providing situation-specific knowledge. The resulting
qualitative data generated by observational studies are often characterized as being
“rich” or “concrete” (Rahat et al., 2005). The advantages of observational tech-
niques are similar to interviews in that they require a minimum of resources, and
further, provide for the capture of generally unbiased and contextual information.
The disadvantages of observational techniques are again similar to interviews, in
that they are time-intensive and do not easily yield large amounts of quantitative
data. When quantitative data are generated from the observational studies, it is often
a time- and resource-intensive task to code generated transcripts in order to extract
data. Furthermore, in the absence of think-aloud protocols, it is left to the research-
ers to infer thought processes and knowledge structures from the behaviors that
they have observed. However, one could debrief the subjects after the observations,
using specific probes (questions) to get their interpretations to check for accuracy.

10.3.1.1 Group techniques

A number of group techniques for expert KE have been reported, including brain-
storming (Osborn, 1953), nominal group studies (Delbecq et al., 1986; Jones and
Hunter, 1999), presentation discovery (Payne and Starren, 2005), Delphi stud-
ies (Adelman, 1989), consensus decision making (McGraw and Seale, 1988),
and computer-aided group sessions (Adams et al., 1999). All of these techniques
focus on the elicitation of consensus-based knowledge. It has been argued that

2The alteration of behavior by the subjects of a study, resulting because they know that they are being
observed. The term was coined in 1950 by Henry A. Landsberger (when analyzing older experiments
from 1924-1932 at the Hawthorne Works (a Western Electric factory outside Chicago)). Ref: Henry
A. Landsberger, Hawthorne Revisited, Ithaca, 1958.
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such consensus-based knowledge is superior to the knowledge that can be gained
from a single expert, since the group techniques used to generate such knowledge
can reduce individual biases, increase the potential for the incorporation of multi-
ple lines of reasoning, and account for potentially incomplete domain knowledge
on the part of individuals (McGraw and Seale, 1988). Besides gaining consensus-
based knowledge from a team of experts, such as expert physicians, there is also the
potential to gain insight about shared interactions from teams who represent mul-
tiple areas of expertise (see the earlier discussion on “Mental Models”). However,
conducting such group-technique KE studies can be difficult; it may be difficult to
recruit appropriate experts to participate or to schedule mutually agreeable times
and locations for such groups to meet. Furthermore, a forceful or coercive minority
of experts or single experts might exert a disproportionate influence over the con-
tents of the resulting knowledge collection (Liou, 1990).

10.3.1.2 Biases in logical and probabilistic reasoning

In clinical medicine, much of what experts report during knowledge elicitation is
inherently uncertain. Although physicians, including experts in specific clinical
subdomains, have been shown to be poor at the formal estimation of probabilities
associated with relationships (Berwick et al., 1981; Leaper et al., 1972), they will
frequently use terms that show that they are managing uncertainty in their approach
to problems (e.g. “suggests,” “supports,” “goes against,” “often,” “evokes the possi-
bility”). Despite the challenges, many knowledge engineers and psychologists have
sought to obtain true probabilities from experts as part of their knowledge elici-
tation activities. In addition to poor estimation of probabilities by human beings,
bias in their probabilistic reasoning has also been well documented (Kahneman and
Tversky, 1982; Lichtenstein and Fischoff, 1980; Tversky and Kahneman, 1983),
and types of bias have been categorized (Fraser et al., 1992). These bias types
include tendencies (a) to allow undue influence of cognitive availability (recency)
of information, mistaking this characteristic for frequency, (b) to anchor judgments
on initial estimates, (c) to assess the likelihood of an event based on familiarity or
stereotypic representativeness rather than objective frequency, and (d) to overesti-
mate the frequency of rare events.

Following the demonstrations of Tversky and Kahneman, some researchers
speculated that various biases might also be manifest in experts (Fischhoff, 1989),
and they suggested that knowledge engineers should avoid the use of probabilis-
tic or statistical judgments in knowledge elicitation altogether (Hink and Woods,
1987). The work on probabilistic reasoning bias became a red flag, because the
notion of uncertainty is crucial in many expert systems (Fox, 1986; Kuipers et al.,
1988; Zadeh and Kacprzuk, 1992). For example, in diagnostic problems one may
need to formulate such rules as: “If the patient has spots, then the patient has mea-
sles with certainty X (see, for example, the certainty factor uncertainty model used
in the MYCIN expert system (Shortliffe and Buchanan, 1975) and subsequently
applied in many other domains, both within and outside medicine). If experts pro-
vide biased probability estimates, there could be substantial problems for those
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building expert systems containing rules that are triggered when particular prob-
ability values are in effect for specific variables.

In many applications, statistical judgment and the sorts of judgments involved
in decision analysis are contrived, in that they can take experts away from their
usual way of thinking about problems. However, some investigators have argued
that people have little trouble in giving probabilities, and that decision analysis can
be used in knowledge elicitation (Fischhoff, 1989), where the focus is on improving
judgment by making the decision processes and judgment criteria explicit. Some
researchers have expressed doubt that the biases in probabilistic reasoning that have
been observed in laboratory research occur with the same frequency and magni-
tude in any real-world problem-solving situations (Beyth-Marom and Arkes, 1983;
Christensen-Szalanski and Beach, 1984).

Bias in logical reasoning also has been observed in the laboratory, where many
problems have been observed (Evans, 1989; Fischhoff, 1989; Fraser et al., 1992;
Johnson-Laird, 1983):

A tendency to assign undue weight to the first evidence obtained
Overreliance on variables that have taken on extreme values

The tendency to seek evidence that confirms the current hypothesis

The tendency to reason about only one or two hypotheses at a time

The tendency to be overconfident

The desire to maintain consistency with prior hypotheses even if that means
devaluing, distorting, or ignoring important information

Belief in illusory correlations

e The tendency to be overly conservative

e Basing conclusions on hindsight

In their studies of medical decision making, Schwartz and Griffin (1986) cited
over 20 relevant papers supposedly demonstrating that experts rely on heuris-
tics. In fact, they argued that experts do not seem to be prone to biases to such an
extent that the concern should have practical import in knowledge elicitation work.
However, most workers believe that such biasing tendencies are sufficiently com-
mon that they must be considered as confounders during the knowledge elicitation
process.

10.3.2 Data analysis methods

10.3.2.1 Protocol and discourse analysis

The techniques of protocol and discourse analysis are very closely related, and con-
cern themselves with the elicitation of knowledge from individuals while they are
engaged in problem solving or reasoning tasks (i.e. think-aloud studies, as men-
tioned earlier). Such analyses may be performed in order to determine the concep-
tual entities and relationships between those entities used by individuals while they
reason about a problem domain. The basic premises of these techniques are derived
from the domains of psychology and cognitive science (Groen and Patel, 1988;
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W. Kintsch and Greeno, 1985; Patel et al., 2001). In this approach, not only are a
job's task activities charted, but also problem solvers are instructed to explain what
they are doing and thinking while they are performing the task. The think-aloud
procedure generates a response protocol, which is a recording of the deliberations
that is subsequently transcribed and analyzed for propositional content and seman-
tic content. The process of verbalization typically does not significantly affect the
normal course of cognitive processes (Ericsson and Simon, 1993), and it can yield
information about the reasoning sequences and goal structures in experts' problem
solving (Patel and Groen, 1991b; Patel and Ramoni, 1997).

The think-aloud problem-solving/protocol-analysis technique has been used
extensively in cognitive research on medical expertise (Johnson et al., 1981;
Kuipers et al., 1988; Kuipers and Kassirer, 1984; Patel and Groen, 1986). For
example, two early researchers (Kuipers and Kassirer, 1984) found that in a rou-
tine case, experts tended to produce very sparse protocols that did not provide
much basis for characterizing reasoning patterns. The authors suggested that expert
knowledge is so compiled that it is difficult to articulate intermediate steps. This
led to using clinical probes to elicit constrained information within the think-aloud
paradigm (Groen and Patel, 1988). Patel et al. (1994) showed that experts interpret
clinical data from the first few segments of the patient problem evaluation process
in terms of high-level hypotheses, which they later evaluate. This serves to partition
the problem into manageable units, thus reducing the load on working memory. In
contrast, experts out of their domain of expertise (subexperts) generate hypotheses
mostly at lower levels, and they keep generating new hypotheses instead of evaluat-
ing and discarding some of them.

During such protocol analysis studies, the recorded explanations by subjects
are codified for analysis at varying levels of granularity (Feltovich et al., 1989;
Patel and Groen, 1991a; Patel and Groen 1991b; Polson et al., 1992). Discourse
analysis is the process by which an individual’s intended meaning within a body
of text or some other form of narrative discourse is analyzed into discrete units of
thought (propositions). These units are then analyzed according to the context in
which those units appear (propositional relations in semantic structures) as well as
the quantification and description of the relationships existing among those same
units (Alvarez, 2002). The advantage of this approach to conceptual knowledge
elicitation is that it situates the overall elicitation process within the broader distrib-
uted sociocognitive context in which individuals perform real-world reasoning and
problem solving (Patel et al., 2001; Patel et al., 2002).

10.3.2.2 Concept analysis

In recent years, some CTA researchers have adopted a technique called concept
mapping as a method of both eliciting and representing knowledge (Crandall et al.,
2006; Novak, 1990). The modern idea of a concept map can be interpreted as a
“user-friendly” expression of meaning in a text. Concept maps have been used in
many studies of the psychology of expertise, and this work has shown that these
maps can support the formation of consensus among experts (Gordon et al., 1993).
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Concept maps constructed by domain experts clarify what they wish to express, and
they eventually show high levels of agreement (Gordon, 1992). In concept map-
ping knowledge elicitation, the researchers help the domain practitioners to build a
representation based on their domain knowledge, merging the activities of knowl-
edge elicitation and representation. This technique has also proved to be useful as
a tool for creating knowledge-based performance-support systems (Dorsey et al.,
1999). Concept maps are labeled node-link structures, like the semantic networks
described later in the chapter, but are less formal than the networks based on formal
propositional representations.

10.3.2.3 Verification and validation of knowledge acquisition

As mentioned earlier, the process of verification and validation of knowledge is
ideally and most effectively applied throughout the entire knowledge engineer-
ing spectrum. Therefore, it is important to understand the types of verification
and validation metrics and techniques available for use within the specific context
of KA. Verification is the evaluation of a knowledge-based system to ensure that
it satisfies the end-user or domain-specific requirements used to define the design
of that system (logical consistency, general notions of completeness, avoidance of
redundancy, and the like). Validation is the evaluation of a knowledge-based sys-
tem to ensure that it satisfies an external criterion of correctness, e.g. the end-user
or domain-specific requirements that are intended to be realized upon implementa-
tion and refinement of that system. An example of a validation measurement for a
knowledge-based system would be the concordance between the system’s reason-
ing concerning a given set of “real world” input data in comparison to the reason-
ing that would be used by a domain expert assessing the same input data within
the same real-world context. The MYCIN system (Shortliffe, 1976) pioneered these
kinds of knowledge-base validation experiments (Yu et al., 1979a; 1979b).

To summarize the distinction, verification is the evaluation of whether a knowl-
edge-based system meets the perceived requirements of the end users or application
domain, and validation is the evaluation of whether that system meets the realized
(e.g. real-world) requirements of the end users or application domain. However, in
both instances, similar evaluation metrics may be used. A number of critical veri-
fication and validation criteria exist, such as multiple-source or expert agreement,
degree of interrelatedness of the knowledge, and consistency of the generated
knowledge.

10.3.2.4 Heuristic methods

The most commonly used approach to evaluating knowledge is the use of heuris-
tic evaluation criteria (Neilsen, 1994). The advantage of this approach is the obvi-
ous simplicity of the evaluation method (e.g. knowledge engineers or experts may
manually review the knowledge generated and determine if its contents are con-
sistent with the heuristics actually used during expert performance of the related
tasks). However, methods for doing this are limited in their tractability when applied
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to large knowledge sets, since they are difficult, if not impossible, to automate.
Furthermore, they make comparison of knowledge “quality” across multiple sets
infeasible, because of the qualitative nature of the evaluation results being generated.

10.3.3 Representational methods

Cognitive task analysis also speaks to the representation of interpreted data, rather
than just the collection of primary data. CTA techniques generally provide abstract
frameworks that assume particular types of knowledge structures as well as under-
lying reasoning processes.

In the representation of verbal data, investigators have made use of two kinds of
representational formalisms: propositional representations and semantic networks.
Intuitively, a proposition is an idea underlying the surface structure of a text. The
notion’s usefulness arises from the recognition that a given piece of discourse can
have many related ideas embedded within it. A propositional representation pro-
vides a means for representing these ideas, and the relationships among them, in
an explicit fashion. In addition, it provides a way of classifying and labeling these
ideas. Systems of propositional analysis (Frederiksen, 1975; Kintsch, 1974) are
essentially languages that provide a uniform notation and classification for proposi-
tional representations. In all these approaches, as in case grammars, a proposition is
denoted as a relation (predicate) over a set of arguments (concepts). Sowa’s system
of conceptual graphs provides another example of a language of this type (Sowa,
1984). Although there are notational differences in the formalisms, the underlying
assumption is that propositions correspond to the basic units of the representation
of discourse and form manageable units of knowledge representation.

The primary challenge is to represent the structure of verbal or written data aris-
ing from observations and interviews as well as from think-aloud protocols. The first
stage of analysis involves generating a propositional representation of the acquired
text. This is then transformed into a semantic network representation. The network
consists of propositions that describe attribute characteristics, which form the nodes
of the network, and propositions that describe relational information, which form
the links.

The primary relations of interest in these networks are binary dependency rela-
tions, specifically, causal, conditional, and Boolean connectives (and, inclusive
or, and exclusive or relations). In addition, algebraic relations (e.g. greater than),
identifying relations, and categorical relations (i.e. category membership, part-
whole relations) can be expressed. One can also distinguish between the source of
a process and the result of a process. Uncertainty in relations can be represented
by modal qualifiers (e.g. can), and truth values can be indicated when they deviate
from the default value (truth with certainty).

A semantic network is a directed graph formed by nodes and by labeled con-
necting paths. Nodes may represent either clinical findings or hypotheses, whereas
the paths represent directed connections among such nodes. These networks also
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FIGURE 10.3

Semantic analysis of a clinical text. In the diagram, solid rectangles indicate cues from

the text, broken lines indicate diagnostic hypotheses, and arrows indicate directionality of
relations. COND: = conditional relation, CAU: = causal relation, RSLT: = resultive relation.
In this case, the text is taken from an explanation protocol provided by a psychiatrist who
had been challenged by a case from the field of cardiology: “The patient has been reacting
to stress, likely by his injecting a drug (or drugs), which has resulted in tachycardia, a fall
in blood pressure, and elevated temperature. These findings are due to the toxic reaction
caused by the injected drugs. He is in or near shock. The flame-shaped hemorrhage may
represent a sequel of an upsurge in blood pressure possibly as a result of his injection of
drugs.”

provide a relatively precise means for characterizing the directionality of reasoning
(Groen and Patel, 1988).

Figure 10.3 shows a semantic structure generated using discourse analysis to
understand the implied and explicit knowledge contained in a specific text taken
from a think-aloud protocol. The example is based on a diagnostic explanation
offered by a psychiatrist when presented with a case from cardiology (Patel et al.,
1990). The case is not within the subject’s domain of specialization, and the diag-
nosis of a shock state is inaccurate. Because of this, the representation is lacking in
coherence and contains one possible inconsistency; that is, a patient cannot have
both high and low blood pressure at the same time. Furthermore, the underlying
mechanism that explains the signs and symptoms in this patient is attributed to tox-
icity of drugs that the patient has injected in an effort to respond to external psycho-
logical stress. This is an inaccurate description of the patient’s problem.

The diagram consists of nodes linked by arrows. The arrows have labels indi-
cating the relationship between nodes. The two most important are CAU: and
COND:. The arrows labeled CAU: represent causal relations, and those labeled
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COND: represent conditional relations. CAU: means that the source node causes
the target (e.g. upsurge in blood pressure causes flame-shaped hemorrhage), and
COND: means that the source node is an indicator of the target (e.g. tachycardia
indicates shock state). A difference between the two relates to the strength of impli-
cation: COND: expresses a directional conditionality, P1—P2, which implies if
proposition P1 is true then P2 is true. CAU:P1— P2, is a stronger relation indicat-
ing that one variable, P2, is a functional result of another, P1.

10.4 History and current status of computer-based
knowledge acquisition

The knowledge contained in any large-scale decision support system is so extensive
and complex that it has become unreasonable to consider managing such knowl-
edge bases manually. As a result, specialized environments have been constructed
that allow trained individuals to enter new knowledge, and maintain or ‘“curate”
what is already there. Such systems often require structural knowledge of a domain
over which the inferential knowledge is overlaid. Today, that structural knowledge,
which defines the concepts in a domain and some aspects of the hierarchical rela-
tionships among them, is known as an ontology of that domain. Knowledge base
developers and maintainers typically begin with the creation of a basic ontology for
a field and then build inferential structures and relationships that allow a knowledge
system to draw conclusions and generate advice. These knowledge representation
issues are discussed in several chapters in Section I'V.

We mention this topic here because there is a continuum in the development
of computer systems for knowledge acquisition between those that are used for
entering knowledge acquired through another means and those that actually inter-
act with experts to extract, encode, and maintain that knowledge. Today, systems in
the former category dominate, among which the well-known Protégé system is an
important example®. Protégé supports the creation of ontologies and the encoding
of related complex knowledge in a domain (Musen, 1992; Tudorache et al., 2013).
But it would be rare to identify clinical experts who would be able to sit down with
Protégé and “teach” it what they know about their domains of expertise. Protégé
is for programmers and knowledge engineers to use after they have identified the
knowledge that needs to be encoded.

The notion of obtaining knowledge directly from experts using an interac-
tive dialog had its roots in the field of artificial intelligence in the early 1970s.
For example, Carbonell pioneered the notion of computer-based mixed-initiative
dialogs, focusing on educational uses but recognizing that an ability to interview
and interact with a knowledgeable user had broad implications for computational
extraction of knowledge, as well as its conveyance in the educational setting

3http://protege.stanford.edu/ (Accessed August 1, 2013).
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(Carbonell, 1970). Heavily influenced by Carbonell’s work, Shortliffe later experi-
mented with a mixed-initiative dialog system that would allow physicians to teach
the MYCIN program new knowledge (rules) in the domain of infectious disease
therapy (Shortliffe, 1976). The basic notion was that an expert ought to be able to
challenge MYCIN with a new patient case, use its explanation facilities to deter-
mine what faulty or missing knowledge explained any errors in performance (see
Chapter 18 in Buchanan and Shortliffe (1984)), and then to enter new or corrected
rules for MYCIN to incorporate into its knowledge base. Consider, for example,
Figure 10.4, in which an expert attempts to enter a new rule using natural language
methods. In this example, the program has incorrectly interpreted the expert’s state-
ment regarding the gastrointestinal (GI) track. The physician has therefore indicated
that the program’s understanding of the rule is not yet correct. The completion of
the session, leading to correct interpretation of the rule, is shown in Figure 10.5.
MYCIN’s early foray into knowledge acquisition was later extensively
expanded and enhanced by Davis (1979). It was he who coined the phrase “inter-
active transfer of expertise” to describe the notion of an expert interacting with
an intuitive, natural interface implemented in a computer program to “teach” the

**NR(the expert physician indicates that he would like to enter a New Rule)
The new rule will be called RULE200

IF: 1** ORGANISM IS A GRAM NEGATIVE ROD
and 2** IT IS ANAEROBIC
and 3** IT ENTERED THE BLOOD FROM THE GI TRACK
and 4** <CR>(the physician enters a carriage return to indicate completion)
THEN: 1** IT IS PROBABLY A BACTEROIDES
On a scale of 1 to 10, how much certainty would you affix to this conclusion?
*%k 9
And  2**<CR>

This is my understanding of your rule:

RULE200

IF: 1) The site of the culture is blood, and
2) The site of the culture is GlI, and
3) The stain of the organism is gramneg, and
4) The morphology of the organism is rod, and
5) The aerobicity of the organism is anaerobic

THEN: There is strongly suggestive evidence (.9) that the identity of the organism is
bacteroides

Okay? (YES or NO)
** NO

FIGURE 10.4

A mixed-initiative knowledge-acquisition dialog between MYCIN and an infectious disease
expert. The physician’s entries are indicated by bolded text in capital letters, with MYCIN’s
responses in mixed upper- and lower-case. Comments are italicized.
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Change PREMISE? (YES or NO)
** YES

Want to see the current version? (YES or NO)
**NO

Change (C), Delete (D), or Add (A) a component:
e

Which component? (enter number):

.y

Enter the new component:

** PORTAL OF ENTRY IS THE GI TRACK
More changes to this PREMISE? (YES or NO)
**NO

Change rule’s conclusion? (YES or NO)

**NO

This is my understanding of your rule:
RULE200... etc.

FIGURE 10.5

In this continuation of the session from Figure 10.4, the expert indicates what corrections
need to be made and is able to verify that the revised rule is what was intended.

machine about his or her knowledge of a domain. Davis’s system, which general-
ized the methods beyond the MYCIN domain, was known as Teiresias. The pro-
gram’s power came in part from the creation of a notion known as rule models,
meta-level descriptions of the knowledge categories and relationships that charac-
terized the domain in question and guided the interactive knowledge acquisition
process. Depicting a full dialog with Teiresias would be too detailed for this vol-
ume, but several examples can be found in Chapter 9 of Buchanan and Shortliffe
(1984) and in Davis’s summary article, which shows how the approach could be
used in a totally different domain (Davis, 1979). There was also a journal titled
Knowledge Acquisition that published six volumes between 1989 and 1994.*
Although the performance of these early programs was promising, the complex-
ity of their creation, maintenance, and use made it difficult to get experts to work
with them directly. They much preferred to work with knowledge engineers and
psychologists who used the knowledge elicitation techniques we have previously
described. Thus, in the 1980s, there was a gradual move toward creating powerful
knowledge authoring and editing tools that could be used by knowledge engineers
after they had elicited the pertinent knowledge from human experts. Graphical
user interfaces, unavailable in the 1970s when MYCIN and Teiresias were created,
encouraged the adaptation of visual programming concepts for use in knowledge
base construction and maintenance. One of the earliest efforts was Musen’s creation
of OPAL, a graphical authoring environment for entering and maintaining cancer

“http://www.sciencedirect.com/science/journal/10428143 (Accessed August 3, 2013)
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chemotherapy research protocols that were used by ONCOCIN to guide oncolo-
gists in the treatment of cancer patients (Musen et al., 1988). OPAL later was gen-
eralized to be used for knowledge entry and editing in any domain, and this led to
the creation of Protégé, which is today heavily used for ontology construction and
maintenance (Gennari et al., 2003).

Today, although experiments continue, it is a rare knowledge-elicitation tool that
is designed and successfully implemented for use directly by physicians or other
clinical experts. We instead see continued emphasis on the specialized skills of indi-
viduals who know the computational systems but who also have the interpersonal
skills, and ability to learn about what is often a new domain to them, in order to
work closely with experts, and groups of individuals, in order to elicit the knowl-
edge that is needed for medical decision support. In addition, there is a great deal
of work that seeks to derive new knowledge from large datasets, especially in the
modern era of “big data.” Many of these approaches are discussed in the remaining
chapters in Section III.

10.5 Conclusions

In the modern world, knowledge management has become a major focus of activ-
ity in diverse businesses, including health care. Because of the effort required to
develop and validate such knowledge, there is growing recognition of the need to
share knowledge components when they are developed and optimally to involve
experts in providing, assessing, and maintaining the knowledge that is needed.
Although we are creating large institutional, local, regional, and national databases,
only some of the knowledge that we require to inform practice and policy can be
derived solely by analyzing those data or the literature (see Chapters 11 and 12).
Many areas of clinical endeavor still depend heavily on the kind of judgmental
knowledge and experience that is difficult to acquire from anyone other than those
who have the wisdom and efficiency that comes with experience and lifelong learn-
ing. Thus, despite the formal analytical methods that are appropriately being used
to make sure that we learn as much as we can from our accumulated experience
stored in pooled databases and in the literature, knowledge elicitation from experts,
and groups of experts, will continue to be a crucial component of knowledge crea-
tion and management for clinical decision support. The early promise of computer-
based transfer of expertise to knowledge systems has not been borne out, although
significant research opportunities and potential continue to exist. The re-emergence
of such systems may be facilitated by our increasing knowledge of human problem-
solving methods and by enabling improvements in technology. For now, however,
it is the direct interaction among experts, and between experts and knowledge engi-
neers, that will serve a crucial role in assuring the development of high quality and
accepted knowledge bases that in turn enable the development and effective use of
decision support systems.
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