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10.1  Introduction
In the chapters of this section, we discuss the various ways that knowledge is 
derived to serve as a basis for clinical decision support. In this first chapter, we 
focus on human expertise as a source of knowledge. In subsequent chapters, we 
explore data-intensive methodologies, and techniques for synthesizing the col-
lected knowledge of the medical literature. We then further explore how advances 
in genomics can offer new types of knowledge for clinical decision making and, in 
turn, how large databases and the data-intensive methodologies can be applied to 
personal decision making.

When we consider what makes human beings excellent at clinical decision 
making, we generally acknowledge that there are two key determinants: how 
much the experts know, and how well they apply what they know when devising 
solutions to problems that may arise. Thus, as we consider the creation of opti-
mal decision support systems, we must similarly consider both the knowledge that 
they embody and the processes they adopt when applying that knowledge. A sys-
tem can be “dumb” if the knowledge it needs is lacking or faulty, and it can dem-
onstrate “poor judgment” if it reaches inappropriate conclusions despite a wealth 
of necessary factual knowledge. We recognize that it means little if we cram huge 
amounts of knowledge into a system but the program subsequently cannot use it 
wisely or appropriately.

In this chapter we focus on the acquisition of knowledge so that it can be 
encoded for use in decision support systems. Our emphasis is on what we can 
learn through interaction with human beings who are excellent at the same task for 
which the system is intended. As we have suggested, that means that we need to 
understand both the factual knowledge that is required to solve the relevant prob-
lems and the judgmental knowledge that characterizes a decision maker who gets 
to the heart of a problem effectively, discards irrelevant information, and demon-
strates an ability to be creative rather than to solve problems by rote formula every 
time they arise.

As noted previously, Chapters 11 and 12 discuss analytical methods for identify-
ing new or relevant knowledge from databases or the literature, such as data mining 
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techniques and meta-analysis. Here, rather, we focus on the elicitation of knowl-
edge by interacting with expert human beings – analyzing their behaviors, inferring 
their beliefs and knowledge, asking them to explain their thought processes and 
actions, shadowing them while they perform expert tasks, and applying formal or 
informal methods for extracting from those behaviors and explanations the factual 
and judgmental knowledge that they appear to be applying. Such interactions can be 
undertaken by human beings interacting with experts (often called knowledge elici-
tation by cognitive scientists, or knowledge engineering by computer scientists) or 
by computer programs that experts can use to convey what they know for capture 
in a computer-based representation (often called interactive transfer of expertise). 
This chapter focuses on the former processes, with brief discussion of the history 
of computer-based transfer of expertise from human being to computer in Section 
10.4. Other chapters (Chapters 11–14) discuss current approaches to the inference 
of new knowledge by analyzing large data sets (data mining).

There are a number of reasons why we want to capture expert knowledge 
(Crandall et al., 2006). These include:

●	 Knowledge preservation. We want to capture “wisdom,” which develops with 
expertise. Such knowledge is typically experiential, too often undocumented, 
and we lose it once the expert retires or otherwise leaves the job.

●	 Knowledge sharing. Captured expert knowledge, meaningfully represented, 
can be reused in training programs, where trainees can be taught to develop 
expert strategies and functional efficiency. Such knowledge also can be  
shared among those who need to use it for a wide variety of decision-making 
tasks.

●	 Knowledge to form the basis for decision aids. New technology can be 
created, based on the expert knowledge, to help practitioners make better 
decisions. The technology, properly implemented, must embody the concepts, 
principles, and procedures of the work domain.

●	 Knowledge that reveals underlying skills. As the use of expert knowledge is 
explicated, it also reveals underlying strategies and skills, and how heuristics 
and intuition are applied in practice.

●	 Understandability of human-derived knowledge. As opposed to the “logic” 
underlying data-intensive or probabilistic techniques, the rationale for a judg-
ment by a human expert can be explained in a form that makes sense and can 
thus be more readily accepted by a user.

Although the computer-based representation of knowledge is covered in 
Section IV of this volume, it is difficult to discuss the acquisition of knowledge 
without considering the representational issues that motivate and guide the acqui-
sition process. Furthermore, the entire effort to capture and utilize knowledge in 
computer programs is predicated on the recognition that knowledge has a central 
role to play in providing tailored guidance through decision support systems. For 
example, cognitive psychologists have recognized the centrality of domain-specific 
knowledge in the skilled solving of complex problems (Patel and Groen, 1991a; 
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Patel and Groen, 1991b). Researchers in artificial intelligence have been noting 
for decades that “knowledge is power” and that general representations and search 
strategies, once a primary focus in that field, are limited in their ability to create 
intelligent behavior in machines (Feigenbaum et al., 1971). Knowledge-dependent 
computer applications, such as expert systems that use expert knowledge to perform 
complex problem solving and decision-making tasks (Duda and Shortliffe, 1983), 
are intended for use when the real experts are scarce, expensive, inconsistent, or 
simply unavailable on a routine basis. This characterization begs the questions 
“What is an expert?” and “How do we distinguish the knowledge and abilities of 
experts from those who are novices, or less expert, in a field?” Although we can 
easily agree that experts are those who have special skills or knowledge derived 
from extensive experience in their domain of expertise, their ability to achieve 
accurate and reliable performance also shows flexibility and adaptiveness in their 
environment that is difficult to explain by factual knowledge alone. We recognize 
that experts know “how” and “when”, not just “what,” and any attempt to capture 
knowledge for computer representation and use must recognize that these two gen-
eral classes of knowledge are equally important.

Knowledge acquisition is a very general term that may be defined as the pro-
cess of identifying and eliciting knowledge from existing sources – from domain 
experts, from documents, or inferred from large datasets – and subsequently 
encoding that knowledge so that it can be verified, validated, and utilized. This 
volume discusses the design and implementation of such knowledge-based sys-
tems and the evaluation of their performance. However, reproducible methods to 
acquire such knowledge, and to assure its accuracy, are typically discussed sepa-
rately, even though they are intimately related to the design and construction of 
decision support programs. A knowledge base used in a clinical decision support 
system might contain knowledge structures that represent potential findings and 
diagnoses and the relationships among them (conceptual or factual knowledge), a 
knowledge structure representing guidelines or algorithms used to operate on this 
knowledge structure (procedural knowledge), and possibly also a knowledge struc-
ture with application logic used to apply these guidelines and algorithms to the 
underlying conceptual structure (strategic knowledge). All these types of knowl-
edge must be combined to achieve a functioning decision support facility, and the 
elicitation of knowledge needed for expert performance must address each type of 
knowledge, not just “facts.”

The techniques and theories that enable knowledge elicitation can be viewed 
within the context of the process illustrated in Figure 10.1. The process begins with 
methods to “extract” knowledge from human experts (knowledge acquisition [KA] 
or knowledge elicitation [KE]), followed by the representation of that knowledge 
(KR) in a computationally tractable form that supports knowledge-based agents or 
applications (Hoffman et al., 1995). Many people would then include the verifica-
tion and validation of the output of those knowledge-based agents or applications as 
part of the complete process, since they provide feedback regarding the quality of 
the contents of the underlying knowledge structures.
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There is a variant of Figure 10.1 in which the knowledge is acquired not from 
a single expert collaborator but rather from a group of experts, perhaps through a 
consensus development process or by studying several experts and merging what 
one has learned into a single knowledge base. The field of cognitive science offers 
several methods for understanding the reasoning processes, mental models, and 
knowledge used by experts when they solve problems, as well as for dealing with 
team decision making and consensus development. We shall present some of those 
notions in the subsection that follows. There are also formal methods by which 
experts work together, supported by the literature and formal research studies, to 
reach consensus in formulating knowledge (e.g. the process of evidence-based 
guideline development (Peleg et al., 2006)). The acquisition and representation of 
consensus guidelines are further discussed in Chapter 16.

Finally, there has been substantial work to develop computer programs that 
acquire knowledge directly from experts (see Figure 10.2). Termed knowledge 
acquisition systems or knowledge authoring systems (see Section 10.4), these pro-
grams are intended to fill the role of knowledge engineer, providing human beings 
with a computational environment for assessing what knowledge is missing from a 
system and transferring their knowledge so that it can be encoded for that system’s 
use. Such programs may be tightly coupled with the decision support system itself, 
allowing the system’s decision-making abilities to be assessed and debugged as part 
of the knowledge acquisition/enhancement process. They always rely on access to 
the pre-existing knowledge in the system, as is indicated by the arrows going in 
both directions between the computer and the knowledge base in the figure.
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FIGURE 10.1

The classical view of knowledge engineering, in which an individual who knows the 
technical details of a system’s representational conventions also has the skills of interviewing 
and observation necessary to work closely with an expert (or a group of experts) in order to 
obtain the needed knowledge and to convert it to a computationally useful form.
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10.2  Theoretical basis for knowledge acquisition
We now focus on the frequently cited theoretical basis that underlies the numerous 
methods and techniques that exist to elicit domain knowledge from sources such 
as relevant experts. The currently accepted psychological basis for KA depends on 
defining and acknowledging the concept of expertise. Two major goals of exper-
tise research have been to understand what distinguishes outstanding individuals 
in a domain from less outstanding individuals, and to characterize the development 
of expertise. This approach originated with the pioneering research of deGroot 
(deGroot, 1965) in the domain of chess, from which it extended to investigations 
of expertise in a range of content domains, including physics (Chi et  al., 1981; 
Larkin et  al., 1980), music (Sloboda, 1991), sports (Allard and Starkes, 1991), 
and medicine (Patel and Groen, 1991b). This research has shown that, on average, 
the achievement of expert levels of performance in any domain requires about ten 
years of full-time experience. An “expert” is someone who has achieved a high 
level of proficiency, as indicated by various measures, such as international “Elo” 
ratings in chess (named for the system's creator, Árpád Élő, a Hungarian-born 
American physics professor), world rankings in various athletic endeavors, and cer-
tification by a sanctioned licensing body, as in medical subspecialties.

10.2.1  The nature of expertise
In medicine, the expert–novice paradigm has contributed to our understanding of 
the nature of medical expertise and skilled clinical performance. Expert physicians 
have extensive general knowledge of medicine (acquired through medical school 
and residency training) and deep, detailed knowledge of their relatively narrow 

Knowledge
of a domain 

Knowledge
acquisition
(Elicitation)

Knowledge
representation

Expert

Software for
applying

knowledge 

Decision-support system

Physician
user

Computer
system

FIGURE 10.2

The interactive transfer of expertise using a computer program for knowledge acquisition. 
Note that such programs will generally both create new knowledge and use preexisting 
knowledge to guide the knowledge acquisition process. See also Section 10.4.
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areas of specialization (acquired from both training and clinical experience). Every 
experienced physician has acquired common wisdom and medical knowledge as 
well as certain mastery in the application of medical skills; this constitutes generic 
expertise. Investigators have suggested the following classification of levels of 
expertise (Patel and Groen, 1991b):

●	 A beginner is a person who has only routine, lay knowledge of a domain; an 
example is a typical patient.

●	 A novice is someone who has begun to acquire the prerequisite knowledge 
assumed in the domain, such as a medical student; novices have a basic 
familiarity with the core concepts, the language, and to a lesser extent, the 
culture of medicine.

●	 An intermediate is above the beginner level but below the subexpert level and is 
typically a senior medical student or a junior resident.

●	 A subexpert (e.g. a specialist solving a clinical problem outside his or her 
domain of expertise) possesses generic knowledge and experience that 
exceeds that of an intermediate but lacks specialized knowledge of the medical 
subdomain in question.

●	 An expert (e.g., a cardiologist or an experienced intensive care nurse) has spe-
cialized knowledge of the subdomain in addition to broad generic knowledge.

The development of expertise has been shown to follow a somewhat counter
intuitive trajectory. It is often assumed that the novice becomes an expert by a 
steady, gradual accumulation of knowledge and fine-tuning of skills. That is, as 
a person becomes more familiar with a domain, his or her level of performance 
(e.g. accuracy and quality) gradually increases. It turns out, however, that one 
generally can document a degradation in performance as a subject moves from 
novice to expert. This has been referred to as the intermediate effect (Patel and 
Groen, 1991a). It has been repeatedly demonstrated that superior expert perfor-
mance is mediated by highly structured and richly interconnected domain-specific 
knowledge. Experts’ knowledge is hierarchical and densely interconnected, which 
allows new pieces of information to become well integrated. Given that a novice’s 
knowledge base is sparse and an expert’s knowledge base is intricately intercon-
nected, an intermediate may have many of the pieces of knowledge in place but lack 
the extensive connectedness of an expert, leading to the intermediate effect just men-
tioned. For example, expert cardiologists are routinely called upon to integrate clinical 
findings at various levels of aggregation, from biochemical abnormalities evidenced in 
blood tests to perturbations at the system level to clinical manifestations as expressed 
in the patient’s complaints. After the performance degradation phase due to the inter-
mediate effect, practitioners develop the missing connections among concepts in their 
knowledge base and, as they gain experience in the execution of a task, their perfor-
mance becomes increasingly smooth, efficient, and automatic.

A great deal of experts’ knowledge is finely tuned and highly automated, 
enabling them to execute a set of procedures in an efficient, yet highly adap-
tive manner, which is sensitive to shifting contexts. They can readily filter out 
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irrelevant information. Novices, as opposed to intermediates, do not conduct irrel-
evant searches, simply because they lack knowledge rich enough to generate such 
searches. Studies demonstrate that expert performance is not a result of generally 
superior memory skills, but it is a function of a well-organized knowledge base 
adapted to recognizing familiar configurations of stimuli. The nature of experts’ 
organized knowledge can also account for their superior perceptions of patterns. 
This is demonstrated compellingly in studies of expert radiologists, where they can 
be shown to look at the x-ray image at a glance, to develop an immediate impres-
sion, and then to search the image for findings that fail to fit or that otherwise 
modify the initial impression. For more details on the nature of expertise, refer to 
several of the key papers in the field (Chi et al., 1988; Ericsson, 1996; Ericsson and 
Smith, 1991; Feltovich et al., 1997).

One of the things that domain experts know about is the procedures they use 
in their practice. They learn many “heuristics” or rules of thumb (Chapman and 
Elstein, 2000). These compiled, top-level procedures can lead experts to skip steps 
when they describe the processes by which they carry out their task. Some such 
heuristics are shared with other experts, but others are ones they have created on 
their own (Patel et  al., 1994). In addition, experts have meta-cognitive awareness 
of their own strategies and how they manage their resources (Glaser, 1996). Meta-
cognition refers to the collection of cognitive process and functions that individuals 
use when thinking about their own cognition (about the way that they think).

Thus, when such experts work with knowledge engineers or KA programs, their 
goal is to transfer their existing knowledge to the computer so that it is able to rep-
licate human expert performance in the task for which they have specialized exper-
tise. Given the complexity of the types of knowledge and perceptual issues that 
characterize human expertise, it is challenging to capture such knowledge and to 
encode it for computer use so that expert performance by a decision support system 
can be achieved.

10.2.2  Role of mental models
One of the significant challenges of knowledge representation, especially from a cog-
nitive perspective, is to devise mechanisms for capturing and representing the prod-
ucts of human clinical comprehension. For example, during a clinical diagnosis task, 
clinicians perceive, focus on, comprehend and create solutions using available patient 
information. The summary results of this process (e.g. a diagnosis or an assessment 
and plan) are often documented for future users (e.g. another physician during a 
later shift). However, the intermediate thought processes (i.e. how the diagnosis was 
reached, or what relationships among the available data were considered) are quite 
difficult to capture and use for the future. Such a representation would be useful, not 
only for characterizing the nature of knowledge that is used for clinical diagnosis, but 
also for developing intelligent applications that can support decision making. While 
much has been written about rule-based, probabilistic and knowledge-based solu-
tions, there has been very little research on how to capture and distinguish among 
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the corresponding mental models of clinicians, especially given the variability in cli-
nicians’ expertise in a given disease (e.g. the differing mental models of a disease 
between a specialist in the relevant discipline and a less experienced individual such 
as a house officer or even a primary-care physician; the patient’s mental model of his 
or her own disease is of course even more rudimentary).

Such mental models are especially useful for documenting the basis for the 
diagnosis and for sharing information regarding patients and their care transitions. 
These models are designed to answer questions such as “how does this work?” or 
“what will happen if I take the following action?” or “why is the patient’s blood 
glucose level so high given the medications he is currently receiving?” Running a 
model corresponds to a process of mental simulation for generating possible future 
states of a system from an observed or hypothetical state. An individual's mental 
models provide predictive and explanatory capabilities of the function of a given 
system (Patel and Kaufman, 2006).

10.2.3  Team-based decisions and shared knowledge
The development of clinical guidelines and other decision support tools involves 
multiple team players, such as attending physicians, consultants, clinical trainees, 
computer scientists, and psychologists with a range of expertise, unique vocabu-
laries, and specific mental models. Shared mental models are an extension of the 
mental model concept and reflect the shared and collective knowledge of a team. 
They provide reciprocal expectations, which enable teams to coordinate and make 
predictions about the behavior and needs of their colleagues (Cannon-Bowers et al., 
1993). Individual mental models can be studied through a wide range of experi-
mental tasks that involve prediction and explanation. Shared or team mental models 
are best captured using naturalistic1 or quasi-naturalistic methods that characterize 
communication and collective expertise. The study of teams necessitates a conver-
gence of methods that focus on both individual and collective performance.

10.3  Cognitive task analysis
What, then, are the approaches that have allowed nonexperts to analyze, under-
stand, and encode the ways that individual experts make decisions? The general 
approach that cognitive scientists use in analyzing the basis for human performance 
is known as cognitive task analysis (CTA). Its purpose is to capture the way the 
mind works – to capture cognition. CTA should describe the basis for skilled per-
formance that is being studied. The methods in this field are varied, and a detailed 
exposition is beyond the scope of this book, but in using CTA, cognitive scientists 
try to capture what people are thinking about, what they are paying attention to, the 

1 Naturalistic methods are those that involve direct observation of individuals performing tasks in the 
real world rather than in controlled experimental situations.
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strategies they are using in making decisions, what they are trying to accomplish, 
what information they discard, and what they know about the way a process works 
(Crandall et al., 2006). The three key aspects of CTA are 1) knowledge elicitation, 
2) data analysis, and 3) “knowledge representation,” where in the generic case the 
representation of knowledge conforms to formal criteria and methods that may not 
be inherently computational, even though they might provide insight when one is 
constructing a computer system’s knowledge base in the same domain. Cognitive 
scientists will utilize one of a variety of knowledge representation schemes to 
describe and capture what they have learned and to compare the expertise and rea-
soning processes of individuals (for example, novices versus experts when pre-
sented with identical problems). In the following sections, we briefly describe each 
of these three key aspects of CTA.

10.3.1  Knowledge elicitation (KE) methods
Conducting KE studies is often complex and resource-intensive. As a result, it is 
important to select the appropriate KE methods and tools at the outset of such pro-
jects in order to ensure that the end product is amenable to the planned application 
domain. One of the key issues to consider when planning a KE study is the source 
of the knowledge to be elicited. The use of domain experts is probably the most 
common and simultaneously problematic source of knowledge (Scott et al., 1991). 
The use of domain experts presupposes the selection of individuals with sufficient 
domain knowledge, interest in participating in the KE process, and minimal bias – a 
combination of attributes not always easily attained.

Further complicating the use of domain experts is the frequent need to collect 
knowledge from multiple experts. Groups of experts are often needed to mitigate 
the problems associated with using single experts, as described later in this chapter 
(Liou, 1990), which may lead to knowledge elicitation with incomplete or poten-
tially ineffective contents. However, though the use of multiple experts has the 
potential benefit of utilizing group synergies to generate consensus knowledge that 
is greater than the sum of the knowledge contributed individually (Boy, 1997), it is 
also not without its potential pitfalls, most notably the difficulties surrounding the 
merging of multiple experts’ knowledge and the potential for the resulting knowl-
edge to represent a single expert’s opinion or input, rather than a true group con-
sensus (Liou, 1990). Despite these potential concerns, the benefits of using multiple 
experts in the knowledge elicitation process generally outweigh the disadvantages.

Straightforward interview techniques are often used because they require a min-
imum level of resources, can be performed in a relatively short time frame, and can 
yield a significant amount of qualitative knowledge. The disadvantages of interview 
techniques include a frequent lack of quantitative data, which are needed for the 
input into the next step in the process. Furthermore, the results can often be biased 
due to the framing or presentation of questions or the selection of topics that are of 
interest only to researchers (Boy, 1997; Hawkins, 1983). But, perhaps most impor-
tantly, interviews simply lead to introspective opinions of the collaborating experts, 
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and the knowledge elicited may not correspond to what they actually do when solv-
ing problems in the domain. For this reason, most knowledge engineers and psy-
chologists who perform knowledge elicitation would prefer to observe the experts 
as they carry out tasks, either in simulated or “real world” environments. In order 
to gain insight into their mental processes, the experts may be asked to talk aloud 
about what they are doing and thinking while they are performing the task. In the 
world of cognitive science, such responses generated during problem solving are 
known as think-aloud protocols (Ericsson and Simon, 1993).

In contrast, ethnographic evaluations of expert performance are naturalistic 
observational studies conducted in context, with a minimum of knowledge engi-
neer or psychologist involvement in the workflow or situation under consideration 
(“fly on the wall” observations). Such studies also implicitly evaluate the knowl-
edge used by those experts and have been have been used in a variety of domains, 
ranging from air traffic control systems to complex healthcare delivery applications 
(Adria et al., 2003; Cohen et al., 2006; John et al., 1995; Laxmisan et al., 2005). 
One of the primary benefits of contemporary ethnographic research methods is 
that they are specifically tailored to minimize potential observational or researcher-
induced biases (e.g. the Hawthorne effect2), while maximizing the role of collect-
ing information in context, providing situation-specific knowledge. The resulting 
qualitative data generated by observational studies are often characterized as being 
“rich” or “concrete” (Rahat et  al., 2005). The advantages of observational tech-
niques are similar to interviews in that they require a minimum of resources, and 
further, provide for the capture of generally unbiased and contextual information. 
The disadvantages of observational techniques are again similar to interviews, in 
that they are time-intensive and do not easily yield large amounts of quantitative 
data. When quantitative data are generated from the observational studies, it is often 
a time- and resource-intensive task to code generated transcripts in order to extract 
data. Furthermore, in the absence of think-aloud protocols, it is left to the research-
ers to infer thought processes and knowledge structures from the behaviors that 
they have observed. However, one could debrief the subjects after the observations, 
using specific probes (questions) to get their interpretations to check for accuracy.

10.3.1.1  Group techniques
A number of group techniques for expert KE have been reported, including brain-
storming (Osborn, 1953), nominal group studies (Delbecq et  al., 1986; Jones and 
Hunter, 1999), presentation discovery (Payne and Starren, 2005), Delphi stud-
ies (Adelman, 1989), consensus decision making (McGraw and Seale, 1988), 
and computer-aided group sessions (Adams et  al., 1999). All of these techniques 
focus on the elicitation of consensus-based knowledge. It has been argued that 

2 The alteration of behavior by the subjects of a study, resulting because they know that they are being 
observed. The term was coined in 1950 by Henry A. Landsberger (when analyzing older experiments 
from 1924–1932 at the Hawthorne Works (a Western Electric factory outside Chicago)). Ref: Henry 
A. Landsberger, Hawthorne Revisited, Ithaca, 1958.
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such consensus-based knowledge is superior to the knowledge that can be gained 
from a single expert, since the group techniques used to generate such knowledge 
can reduce individual biases, increase the potential for the incorporation of multi-
ple lines of reasoning, and account for potentially incomplete domain knowledge 
on the part of individuals (McGraw and Seale, 1988). Besides gaining consensus-
based knowledge from a team of experts, such as expert physicians, there is also the 
potential to gain insight about shared interactions from teams who represent mul-
tiple areas of expertise (see the earlier discussion on “Mental Models”). However, 
conducting such group-technique KE studies can be difficult; it may be difficult to 
recruit appropriate experts to participate or to schedule mutually agreeable times 
and locations for such groups to meet. Furthermore, a forceful or coercive minority 
of experts or single experts might exert a disproportionate influence over the con-
tents of the resulting knowledge collection (Liou, 1990).

10.3.1.2  Biases in logical and probabilistic reasoning
In clinical medicine, much of what experts report during knowledge elicitation is 
inherently uncertain. Although physicians, including experts in specific clinical 
subdomains, have been shown to be poor at the formal estimation of probabilities 
associated with relationships (Berwick et al., 1981; Leaper et al., 1972), they will 
frequently use terms that show that they are managing uncertainty in their approach 
to problems (e.g. “suggests,” “supports,” “goes against,” “often,” “evokes the possi-
bility”). Despite the challenges, many knowledge engineers and psychologists have 
sought to obtain true probabilities from experts as part of their knowledge elici-
tation activities. In addition to poor estimation of probabilities by human beings, 
bias in their probabilistic reasoning has also been well documented (Kahneman and 
Tversky, 1982; Lichtenstein and Fischoff, 1980; Tversky and Kahneman, 1983), 
and types of bias have been categorized (Fraser et  al., 1992). These bias types 
include tendencies (a) to allow undue influence of cognitive availability (recency) 
of information, mistaking this characteristic for frequency, (b) to anchor judgments 
on initial estimates, (c) to assess the likelihood of an event based on familiarity or 
stereotypic representativeness rather than objective frequency, and (d) to overesti-
mate the frequency of rare events.

Following the demonstrations of Tversky and Kahneman, some researchers 
speculated that various biases might also be manifest in experts (Fischhoff, 1989), 
and they suggested that knowledge engineers should avoid the use of probabilis-
tic or statistical judgments in knowledge elicitation altogether (Hink and Woods, 
1987). The work on probabilistic reasoning bias became a red flag, because the 
notion of uncertainty is crucial in many expert systems (Fox, 1986; Kuipers et al., 
1988; Zadeh and Kacprzuk, 1992). For example, in diagnostic problems one may 
need to formulate such rules as: “If the patient has spots, then the patient has mea-
sles with certainty X” (see, for example, the certainty factor uncertainty model used 
in the MYCIN expert system (Shortliffe and Buchanan, 1975) and subsequently 
applied in many other domains, both within and outside medicine). If experts pro-
vide biased probability estimates, there could be substantial problems for those 
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building expert systems containing rules that are triggered when particular prob-
ability values are in effect for specific variables.

In many applications, statistical judgment and the sorts of judgments involved 
in decision analysis are contrived, in that they can take experts away from their 
usual way of thinking about problems. However, some investigators have argued 
that people have little trouble in giving probabilities, and that decision analysis can 
be used in knowledge elicitation (Fischhoff, 1989), where the focus is on improving 
judgment by making the decision processes and judgment criteria explicit. Some 
researchers have expressed doubt that the biases in probabilistic reasoning that have 
been observed in laboratory research occur with the same frequency and magni-
tude in any real-world problem-solving situations (Beyth-Marom and Arkes, 1983; 
Christensen-Szalanski and Beach, 1984).

Bias in logical reasoning also has been observed in the laboratory, where many 
problems have been observed (Evans, 1989; Fischhoff, 1989; Fraser et  al., 1992; 
Johnson-Laird, 1983):

●	 A tendency to assign undue weight to the first evidence obtained
●	 Overreliance on variables that have taken on extreme values
●	 The tendency to seek evidence that confirms the current hypothesis
●	 The tendency to reason about only one or two hypotheses at a time
●	 The tendency to be overconfident
●	 The desire to maintain consistency with prior hypotheses even if that means 

devaluing, distorting, or ignoring important information
●	 Belief in illusory correlations
●	 The tendency to be overly conservative
●	 Basing conclusions on hindsight

In their studies of medical decision making, Schwartz and Griffin (1986) cited 
over 20 relevant papers supposedly demonstrating that experts rely on heuris-
tics. In fact, they argued that experts do not seem to be prone to biases to such an 
extent that the concern should have practical import in knowledge elicitation work. 
However, most workers believe that such biasing tendencies are sufficiently com-
mon that they must be considered as confounders during the knowledge elicitation 
process.

10.3.2  Data analysis methods
10.3.2.1  Protocol and discourse analysis
The techniques of protocol and discourse analysis are very closely related, and con-
cern themselves with the elicitation of knowledge from individuals while they are 
engaged in problem solving or reasoning tasks (i.e. think-aloud studies, as men-
tioned earlier). Such analyses may be performed in order to determine the concep-
tual entities and relationships between those entities used by individuals while they 
reason about a problem domain. The basic premises of these techniques are derived 
from the domains of psychology and cognitive science (Groen and Patel, 1988;  
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W. Kintsch and Greeno, 1985; Patel et al., 2001). In this approach, not only are a 
job's task activities charted, but also problem solvers are instructed to explain what 
they are doing and thinking while they are performing the task. The think-aloud 
procedure generates a response protocol, which is a recording of the deliberations 
that is subsequently transcribed and analyzed for propositional content and seman-
tic content. The process of verbalization typically does not significantly affect the 
normal course of cognitive processes (Ericsson and Simon, 1993), and it can yield 
information about the reasoning sequences and goal structures in experts' problem 
solving (Patel and Groen, 1991b; Patel and Ramoni, 1997).

The think-aloud problem-solving/protocol-analysis technique has been used 
extensively in cognitive research on medical expertise (Johnson et  al., 1981; 
Kuipers et  al., 1988; Kuipers and Kassirer, 1984; Patel and Groen, 1986). For 
example, two early researchers (Kuipers and Kassirer, 1984) found that in a rou-
tine case, experts tended to produce very sparse protocols that did not provide 
much basis for characterizing reasoning patterns. The authors suggested that expert 
knowledge is so compiled that it is difficult to articulate intermediate steps. This 
led to using clinical probes to elicit constrained information within the think-aloud 
paradigm (Groen and Patel, 1988). Patel et al. (1994) showed that experts interpret 
clinical data from the first few segments of the patient problem evaluation process 
in terms of high-level hypotheses, which they later evaluate. This serves to partition 
the problem into manageable units, thus reducing the load on working memory. In 
contrast, experts out of their domain of expertise (subexperts) generate hypotheses 
mostly at lower levels, and they keep generating new hypotheses instead of evaluat-
ing and discarding some of them.

During such protocol analysis studies, the recorded explanations by subjects 
are codified for analysis at varying levels of granularity (Feltovich et  al., 1989;  
Patel and Groen, 1991a; Patel and Groen 1991b; Polson et  al., 1992). Discourse 
analysis is the process by which an individual’s intended meaning within a body 
of text or some other form of narrative discourse is analyzed into discrete units of 
thought (propositions). These units are then analyzed according to the context in 
which those units appear (propositional relations in semantic structures) as well as 
the quantification and description of the relationships existing among those same 
units (Alvarez, 2002). The advantage of this approach to conceptual knowledge 
elicitation is that it situates the overall elicitation process within the broader distrib-
uted sociocognitive context in which individuals perform real-world reasoning and 
problem solving (Patel et al., 2001; Patel et al., 2002).

10.3.2.2  Concept analysis
In recent years, some CTA researchers have adopted a technique called concept 
mapping as a method of both eliciting and representing knowledge (Crandall et al., 
2006; Novak, 1990). The modern idea of a concept map can be interpreted as a 
“user-friendly” expression of meaning in a text. Concept maps have been used in 
many studies of the psychology of expertise, and this work has shown that these 
maps can support the formation of consensus among experts (Gordon et al., 1993). 
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Concept maps constructed by domain experts clarify what they wish to express, and 
they eventually show high levels of agreement (Gordon, 1992). In concept map-
ping knowledge elicitation, the researchers help the domain practitioners to build a 
representation based on their domain knowledge, merging the activities of knowl-
edge elicitation and representation. This technique has also proved to be useful as 
a tool for creating knowledge-based performance-support systems (Dorsey et  al., 
1999). Concept maps are labeled node-link structures, like the semantic networks 
described later in the chapter, but are less formal than the networks based on formal 
propositional representations.

10.3.2.3  Verification and validation of knowledge acquisition
As mentioned earlier, the process of verification and validation of knowledge is 
ideally and most effectively applied throughout the entire knowledge engineer-
ing spectrum. Therefore, it is important to understand the types of verification 
and validation metrics and techniques available for use within the specific context 
of KA. Verification is the evaluation of a knowledge-based system to ensure that 
it satisfies the end-user or domain-specific requirements used to define the design 
of that system (logical consistency, general notions of completeness, avoidance of 
redundancy, and the like). Validation is the evaluation of a knowledge-based sys-
tem to ensure that it satisfies an external criterion of correctness, e.g. the end-user 
or domain-specific requirements that are intended to be realized upon implementa-
tion and refinement of that system. An example of a validation measurement for a 
knowledge-based system would be the concordance between the system’s reason-
ing concerning a given set of “real world” input data in comparison to the reason-
ing that would be used by a domain expert assessing the same input data within 
the same real-world context. The MYCIN system (Shortliffe, 1976) pioneered these 
kinds of knowledge-base validation experiments (Yu et al., 1979a; 1979b).

To summarize the distinction, verification is the evaluation of whether a knowl-
edge-based system meets the perceived requirements of the end users or application 
domain, and validation is the evaluation of whether that system meets the realized 
(e.g. real-world) requirements of the end users or application domain. However, in 
both instances, similar evaluation metrics may be used. A number of critical veri-
fication and validation criteria exist, such as multiple-source or expert agreement, 
degree of interrelatedness of the knowledge, and consistency of the generated 
knowledge.

10.3.2.4  Heuristic methods
The most commonly used approach to evaluating knowledge is the use of heuris-
tic evaluation criteria (Neilsen, 1994). The advantage of this approach is the obvi-
ous simplicity of the evaluation method (e.g. knowledge engineers or experts may 
manually review the knowledge generated and determine if its contents are con-
sistent with the heuristics actually used during expert performance of the related 
tasks). However, methods for doing this are limited in their tractability when applied 
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to large knowledge sets, since they are difficult, if not impossible, to automate. 
Furthermore, they make comparison of knowledge “quality” across multiple sets 
infeasible, because of the qualitative nature of the evaluation results being generated.

10.3.3  Representational methods
Cognitive task analysis also speaks to the representation of interpreted data, rather 
than just the collection of primary data. CTA techniques generally provide abstract 
frameworks that assume particular types of knowledge structures as well as under-
lying reasoning processes.

In the representation of verbal data, investigators have made use of two kinds of 
representational formalisms: propositional representations and semantic networks. 
Intuitively, a proposition is an idea underlying the surface structure of a text. The 
notion’s usefulness arises from the recognition that a given piece of discourse can 
have many related ideas embedded within it. A propositional representation pro-
vides a means for representing these ideas, and the relationships among them, in 
an explicit fashion. In addition, it provides a way of classifying and labeling these 
ideas. Systems of propositional analysis (Frederiksen, 1975; Kintsch, 1974) are 
essentially languages that provide a uniform notation and classification for proposi-
tional representations. In all these approaches, as in case grammars, a proposition is 
denoted as a relation (predicate) over a set of arguments (concepts). Sowa’s system 
of conceptual graphs provides another example of a language of this type (Sowa, 
1984). Although there are notational differences in the formalisms, the underlying 
assumption is that propositions correspond to the basic units of the representation 
of discourse and form manageable units of knowledge representation.

The primary challenge is to represent the structure of verbal or written data aris-
ing from observations and interviews as well as from think-aloud protocols. The first 
stage of analysis involves generating a propositional representation of the acquired 
text. This is then transformed into a semantic network representation. The network 
consists of propositions that describe attribute characteristics, which form the nodes 
of the network, and propositions that describe relational information, which form 
the links.

The primary relations of interest in these networks are binary dependency rela-
tions, specifically, causal, conditional, and Boolean connectives (and, inclusive 
or, and exclusive or relations). In addition, algebraic relations (e.g. greater than), 
identifying relations, and categorical relations (i.e. category membership, part-
whole relations) can be expressed. One can also distinguish between the source of 
a process and the result of a process. Uncertainty in relations can be represented 
by modal qualifiers (e.g. can), and truth values can be indicated when they deviate 
from the default value (truth with certainty).

A semantic network is a directed graph formed by nodes and by labeled con-
necting paths. Nodes may represent either clinical findings or hypotheses, whereas 
the paths represent directed connections among such nodes. These networks also 
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provide a relatively precise means for characterizing the directionality of reasoning 
(Groen and Patel, 1988).

Figure 10.3 shows a semantic structure generated using discourse analysis to 
understand the implied and explicit knowledge contained in a specific text taken 
from a think-aloud protocol. The example is based on a diagnostic explanation 
offered by a psychiatrist when presented with a case from cardiology (Patel et al., 
1990). The case is not within the subject’s domain of specialization, and the diag-
nosis of a shock state is inaccurate. Because of this, the representation is lacking in 
coherence and contains one possible inconsistency; that is, a patient cannot have 
both high and low blood pressure at the same time. Furthermore, the underlying 
mechanism that explains the signs and symptoms in this patient is attributed to tox-
icity of drugs that the patient has injected in an effort to respond to external psycho-
logical stress. This is an inaccurate description of the patient’s problem.

The diagram consists of nodes linked by arrows. The arrows have labels indi-
cating the relationship between nodes. The two most important are CAU: and 
COND:. The arrows labeled CAU: represent causal relations, and those labeled 

Reaction
to stress

Injection
of drug

Tachycardia

Fall in blood
pressure

Elevated
temperature

Shock
state

Toxic

Flame-shaped
hemorrhage

Upsurge in
blood pressure

CAU: COND:

RSLT:

RSLT:

CAU:

CAU:

FIGURE 10.3

Semantic analysis of a clinical text. In the diagram, solid rectangles indicate cues from 
the text, broken lines indicate diagnostic hypotheses, and arrows indicate directionality of 
relations. COND: = conditional relation, CAU: = causal relation, RSLT: = resultive relation. 
In this case, the text is taken from an explanation protocol provided by a psychiatrist who 
had been challenged by a case from the field of cardiology: “The patient has been reacting 
to stress, likely by his injecting a drug (or drugs), which has resulted in tachycardia, a fall 
in blood pressure, and elevated temperature. These findings are due to the toxic reaction 
caused by the injected drugs. He is in or near shock. The flame-shaped hemorrhage may 
represent a sequel of an upsurge in blood pressure possibly as a result of his injection of 
drugs.”
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COND: represent conditional relations. CAU: means that the source node causes 
the target (e.g. upsurge in blood pressure causes flame-shaped hemorrhage), and 
COND: means that the source node is an indicator of the target (e.g. tachycardia 
indicates shock state). A difference between the two relates to the strength of impli-
cation: COND: expresses a directional conditionality, P1→P2, which implies if 
proposition P1 is true then P2 is true. CAU:P1→P2, is a stronger relation indicat-
ing that one variable, P2, is a functional result of another, P1.

10.4  �History and current status of computer-based 
knowledge acquisition

The knowledge contained in any large-scale decision support system is so extensive 
and complex that it has become unreasonable to consider managing such knowl-
edge bases manually. As a result, specialized environments have been constructed 
that allow trained individuals to enter new knowledge, and maintain or “curate” 
what is already there. Such systems often require structural knowledge of a domain 
over which the inferential knowledge is overlaid. Today, that structural knowledge, 
which defines the concepts in a domain and some aspects of the hierarchical rela-
tionships among them, is known as an ontology of that domain. Knowledge base 
developers and maintainers typically begin with the creation of a basic ontology for 
a field and then build inferential structures and relationships that allow a knowledge 
system to draw conclusions and generate advice. These knowledge representation 
issues are discussed in several chapters in Section IV.

We mention this topic here because there is a continuum in the development 
of computer systems for knowledge acquisition between those that are used for 
entering knowledge acquired through another means and those that actually inter-
act with experts to extract, encode, and maintain that knowledge. Today, systems in 
the former category dominate, among which the well-known Protégé system is an 
important example3. Protégé supports the creation of ontologies and the encoding 
of related complex knowledge in a domain (Musen, 1992; Tudorache et al., 2013). 
But it would be rare to identify clinical experts who would be able to sit down with 
Protégé and “teach” it what they know about their domains of expertise. Protégé 
is for programmers and knowledge engineers to use after they have identified the 
knowledge that needs to be encoded.

The notion of obtaining knowledge directly from experts using an interac-
tive dialog had its roots in the field of artificial intelligence in the early 1970s. 
For example, Carbonell pioneered the notion of computer-based mixed-initiative 
dialogs, focusing on educational uses but recognizing that an ability to interview 
and interact with a knowledgeable user had broad implications for computational 
extraction of knowledge, as well as its conveyance in the educational setting 

3 http://protege.stanford.edu/ (Accessed August 1, 2013).

http://protege.stanford.edu/
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(Carbonell, 1970). Heavily influenced by Carbonell’s work, Shortliffe later experi-
mented with a mixed-initiative dialog system that would allow physicians to teach 
the MYCIN program new knowledge (rules) in the domain of infectious disease 
therapy (Shortliffe, 1976). The basic notion was that an expert ought to be able to 
challenge MYCIN with a new patient case, use its explanation facilities to deter-
mine what faulty or missing knowledge explained any errors in performance (see 
Chapter 18 in Buchanan and Shortliffe (1984)), and then to enter new or corrected 
rules for MYCIN to incorporate into its knowledge base. Consider, for example, 
Figure 10.4, in which an expert attempts to enter a new rule using natural language 
methods. In this example, the program has incorrectly interpreted the expert’s state-
ment regarding the gastrointestinal (GI) track. The physician has therefore indicated 
that the program’s understanding of the rule is not yet correct. The completion of 
the session, leading to correct interpretation of the rule, is shown in Figure 10.5.

MYCIN’s early foray into knowledge acquisition was later extensively 
expanded and enhanced by Davis (1979). It was he who coined the phrase “inter-
active transfer of expertise” to describe the notion of an expert interacting with 
an intuitive, natural interface implemented in a computer program to “teach” the 

**NR(the expert physician indicates that he would like to enter a New Rule)
The new rule will be called RULE200 

IF: 1** ORGANISM IS A GRAM NEGATIVE ROD 
and 2** IT IS ANAEROBIC 
and 3** IT ENTERED THE BLOOD FROM THE GI TRACK 
and 4** <CR>(the physician enters a carriage return to indicate completion)

THEN: 1**  IT IS PROBABLY A BACTEROIDES
On a scale of 1 to 10, how much certainty would you affix to this conclusion?
** 9 

And 2** <CR> 

This is my understanding of your rule:

RULE200
IF: 1) The site of the culture is blood, and

2) The site of the culture is GI, and
3) The stain of the organism is gramneg, and
4) The morphology of the organism is rod, and
5) The aerobicity of the organism is anaerobic

THEN: There is strongly suggestive evidence (.9) that the identity of the organism is
bacteroides

Okay? (YES or NO)

** NO 

FIGURE 10.4

A mixed-initiative knowledge-acquisition dialog between MYCIN and an infectious disease 
expert. The physician’s entries are indicated by bolded text in capital letters, with MYCIN’s 
responses in mixed upper- and lower-case. Comments are italicized.
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machine about his or her knowledge of a domain. Davis’s system, which general-
ized the methods beyond the MYCIN domain, was known as Teiresias. The pro-
gram’s power came in part from the creation of a notion known as rule models, 
meta-level descriptions of the knowledge categories and relationships that charac-
terized the domain in question and guided the interactive knowledge acquisition 
process. Depicting a full dialog with Teiresias would be too detailed for this vol-
ume, but several examples can be found in Chapter 9 of Buchanan and Shortliffe 
(1984) and in Davis’s summary article, which shows how the approach could be 
used in a totally different domain (Davis, 1979). There was also a journal titled 
Knowledge Acquisition that published six volumes between 1989 and 1994.4

Although the performance of these early programs was promising, the complex-
ity of their creation, maintenance, and use made it difficult to get experts to work 
with them directly. They much preferred to work with knowledge engineers and 
psychologists who used the knowledge elicitation techniques we have previously 
described. Thus, in the 1980s, there was a gradual move toward creating powerful 
knowledge authoring and editing tools that could be used by knowledge engineers 
after they had elicited the pertinent knowledge from human experts. Graphical 
user interfaces, unavailable in the 1970s when MYCIN and Teiresias were created, 
encouraged the adaptation of visual programming concepts for use in knowledge 
base construction and maintenance. One of the earliest efforts was Musen’s creation 
of OPAL, a graphical authoring environment for entering and maintaining cancer 

Change PREMISE? (YES or NO)
** YES
Want to see the current version? (YES or NO)
** NO
Change (C), Delete (D), or Add (A) a component:
** C
Which component? (enter number):
** 2
Enter the new component:
** PORTAL OF ENTRY IS THE GI TRACK
More changes to this PREMISE? (YES or NO)
** NO
Change rule’s conclusion? (YES or NO)
** NO

This is my understanding of your rule:
RULE200… etc.

FIGURE 10.5

In this continuation of the session from Figure 10.4, the expert indicates what corrections 
need to be made and is able to verify that the revised rule is what was intended.

4 http://www.sciencedirect.com/science/journal/10428143 (Accessed August 3, 2013)

http://www.sciencedirect.com/science/journal/10428143
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chemotherapy research protocols that were used by ONCOCIN to guide oncolo-
gists in the treatment of cancer patients (Musen et al., 1988). OPAL later was gen-
eralized to be used for knowledge entry and editing in any domain, and this led to 
the creation of Protégé, which is today heavily used for ontology construction and 
maintenance (Gennari et al., 2003).

Today, although experiments continue, it is a rare knowledge-elicitation tool that 
is designed and successfully implemented for use directly by physicians or other 
clinical experts. We instead see continued emphasis on the specialized skills of indi-
viduals who know the computational systems but who also have the interpersonal 
skills, and ability to learn about what is often a new domain to them, in order to 
work closely with experts, and groups of individuals, in order to elicit the knowl-
edge that is needed for medical decision support. In addition, there is a great deal 
of work that seeks to derive new knowledge from large datasets, especially in the 
modern era of “big data.” Many of these approaches are discussed in the remaining 
chapters in Section III.

10.5  Conclusions
In the modern world, knowledge management has become a major focus of activ-
ity in diverse businesses, including health care. Because of the effort required to 
develop and validate such knowledge, there is growing recognition of the need to 
share knowledge components when they are developed and optimally to involve 
experts in providing, assessing, and maintaining the knowledge that is needed. 
Although we are creating large institutional, local, regional, and national databases, 
only some of the knowledge that we require to inform practice and policy can be 
derived solely by analyzing those data or the literature (see Chapters 11 and 12). 
Many areas of clinical endeavor still depend heavily on the kind of judgmental 
knowledge and experience that is difficult to acquire from anyone other than those 
who have the wisdom and efficiency that comes with experience and lifelong learn-
ing. Thus, despite the formal analytical methods that are appropriately being used 
to make sure that we learn as much as we can from our accumulated experience 
stored in pooled databases and in the literature, knowledge elicitation from experts, 
and groups of experts, will continue to be a crucial component of knowledge crea-
tion and management for clinical decision support. The early promise of computer-
based transfer of expertise to knowledge systems has not been borne out, although 
significant research opportunities and potential continue to exist. The re-emergence 
of such systems may be facilitated by our increasing knowledge of human problem-
solving methods and by enabling improvements in technology. For now, however, 
it is the direct interaction among experts, and between experts and knowledge engi-
neers, that will serve a crucial role in assuring the development of high quality and 
accepted knowledge bases that in turn enable the development and effective use of 
decision support systems.
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